Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 April 2022 | Story Leonie Bolleurs | Photo Stephen Collett
Prof Ted Kroon
Prof Ted Kroon from the Department of Physics recently delivered his inaugural lecture on the topic What’s the use of a rainbow on the UFS Bloemfontein Campus.

“A rainbow is a natural phenomenon, the result of the refraction and reflection of the sun’s rays in drops of rain. As far as mankind is concerned, it’s a perfectly useless object and won’t make anyone money. Yet the poet who said, My heart leaps up when I behold a rainbow in the sky, only put into word the feeling of wonder and excitement we all have when we see a rainbow.”

“Every day I see a rainbow in my work; I do not need to wait to see one in the sky,” says Prof Ted Kroon, Professor in the Department of Physics at the University of the Free State (UFS), who used this phenomenon to introduce the topic of his inaugural lecture: What’s the use of a rainbow. 

“Far from being only a colourful spectacle with no practical value, rainbows are useful – and lead to useful things,” he believes. 

According to Prof Kroon, one can find examples of real rainbows and rainbow analogies used not only in everyday life, but also in physics. “Besides it being familiar devices in literature, culture, and even marketing, studies of rainbows can yield practical engineering information and may even help us to find new habitable planets,” he says.

Inspired by the many uses of a rainbow

In his lecture, he discussed the basic features of natural rainbows and how they come about. He also explored how the rainbow gives meaning to colour, and how this relates to the temperature of objects. He looked at an array of instances where the rainbow is used; from depicting the life of a star to indicating that we are sick (a thermometer) or when we need to refill a gas cylinder.
Moreover, Prof Kroon pointed out that rainbows are used in computer chips, stress identification, and to transmit internet data through underwater cables of glass fibre. He also referred to how the rainbow was harnessed as an engineering tool to measure refractive index and characterise fine droplet sprays used in industry. 

He continues, “Remarkably, the science developed to understand the natural rainbow can be redirected and applied to the optical properties of metallic nanoparticles, allowing the development of nanotechnology. Knowing how the natural rainbow works and its limitations, better systems have been developed to produce rainbows. Such rainbows have been used to discover new elements and to determine the age of the universe.”

As a member of an international community of phosphor researchers who are privileged to work with rainbows every day, he has used them to study the light-emitting properties of materials doped with bismuth. With this project – an initiative with the African Laser Centre taking place between 2016 and 2021 – he collaborated with the University of Khartoum in Sudan and trained a number of its postgraduate students. “My role included the guidance of students and the measurement and interpretation of the light-emitting properties of the materials. Our research during this time, considering more than a dozen materials, was summarised in 34 scientific publications that contributed to a greater understanding of bismuth ions as light-emitting materials,” he explains. 

Developing new materials, efficient in emitting blue light

He has been developing luminescent materials since 2006, primarily for general lighting (fluorescent tubes and LEDs) and displays (television, computer, and cellphone screens), as well as niche applications in medical and forensic science. 

As part of his current research, he is examining the effect of plasmonic metal nanoparticles on phosphor light emission. He is also exploring materials that absorb infrared light but emit visible light. “For this, I would like to consider the long-term stability of such materials and develop new materials that are more efficient in emitting particularly blue light,” he says. 

Prof Kroon holds a C2 rating from the National Research Foundation and has published more than 150 articles and book chapters, obtaining a Scopus h-index of 26.

News Archive

Boyden Observatory turns 120
2009-05-13

 

At the celebration of the 120th year of existence of the UFS's Boyden Observatory are, from the left: Prof. Herman van Schalkwyk, Dean: Faculty of Natural and Agricultural Sciences at the UFS, Prof. Driekie Hay, Vice-Rector: Academic Planning at the UFS, Mr Ian Heyns from AngloGold Ashanti and his wife, Cheryl, and Prof. François Retief, former rector of the UFS and patron of the Friends of Boyden.
Photo: Hannes Pieterse

The Boyden Observatory, one of the oldest observatories in the Southern Hemisphere and a prominent beacon in Bloemfontein, recently celebrated its 120th year of existence.

This milestone was celebrated by staff, students, other dignitaries of the University of the Free State (UFS) and special guests at the observatory last week.

“The observatory provides the Free State with a unique scientific, educational and tourist facility. No other city in South Africa, and few in the world, has a public observatory with telescopes the size and quality of those at Boyden,” said Prof. Herman van Schalkwyk, Dean of the Faculty of Natural and Agricultural Sciences at the UFS.

The observatory, boasting the third-largest optical telescope in South Africa, has a long and illustrious history. It was established on a temporary site on Mount Harvard near the small town of Chosica, Peru in 1889. Later it was moved to Arequipa in Peru where important astronomical observations were made from 1891 to 1926. “However, due to unstable weather patterns and observing conditions, it was decided to move the Boyden Station to another site somewhere else in the Southern Hemisphere, maybe South Africa,” said Prof. Van Schalkwyk.

South Africa's excellent climatic conditions were fairly well known and in 1927 the instruments were shipped and the Boyden Station was set up next to Maselspoort near Bloemfontein. Observations began in September 1927 and in 1933 the new site was officially completed, including the 60 inch (1.5 m) telescope, which was then the largest optical telescope in the Southern Hemisphere. This telescope was recently refurbished to a modern research instrument.

The observatory has various other telescopes and one of them, the 13" refractor telescope, which was sent to Arequipa in 1891 and later to Bloemfontein, is still in an excellent condition. Another important telescope is the Watcher Robotic Telescope of the University College Dublin, which conducts many successful observations of gamma ray bursts.

“In the first few decades of the twentieth century, the Boyden Observatory contributed considerably to our understanding of the secrets of the universe at large. The period luminosity relationship of the Cepheid variable stars was, for example, discovered from observations obtained at Boyden. This relationship is one of the cornerstones of modern astrophysics. It is currently used to make estimates of the size and age of the universe from observations of the Hubble Space Telescope,” said Prof. Van Schalkwyk.

“The Boyden Observatory contributed to the university’s astrophysics research group being able to produce the first M.Sc. degrees associated with the National Space Science Programme (NASSAP) in the country and the Boyden Science Centre plays an important role in science and technology awareness of learners, teachers and the general public,” said Prof. Van Schalkwyk.

The Boyden Science Centre has also formed strong relationships with various institutions, including the South African Agency for the Advancement of Science and Technology (SAASTA) and the Department of Science and Technology. The centre has already conducted many different projects for the Department of Science and Technology, including National Science Week projects, as well as National Astronomy Month projects. It also serves as one of the hosts of SAASTA’s annual Astronomy Quiz.

Media Release:
Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za
13 May 2009
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept