Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 April 2022 | Story Leonie Bolleurs | Photo Stephen Collett
Prof Ted Kroon
Prof Ted Kroon from the Department of Physics recently delivered his inaugural lecture on the topic What’s the use of a rainbow on the UFS Bloemfontein Campus.

“A rainbow is a natural phenomenon, the result of the refraction and reflection of the sun’s rays in drops of rain. As far as mankind is concerned, it’s a perfectly useless object and won’t make anyone money. Yet the poet who said, My heart leaps up when I behold a rainbow in the sky, only put into word the feeling of wonder and excitement we all have when we see a rainbow.”

“Every day I see a rainbow in my work; I do not need to wait to see one in the sky,” says Prof Ted Kroon, Professor in the Department of Physics at the University of the Free State (UFS), who used this phenomenon to introduce the topic of his inaugural lecture: What’s the use of a rainbow. 

“Far from being only a colourful spectacle with no practical value, rainbows are useful – and lead to useful things,” he believes. 

According to Prof Kroon, one can find examples of real rainbows and rainbow analogies used not only in everyday life, but also in physics. “Besides it being familiar devices in literature, culture, and even marketing, studies of rainbows can yield practical engineering information and may even help us to find new habitable planets,” he says.

Inspired by the many uses of a rainbow

In his lecture, he discussed the basic features of natural rainbows and how they come about. He also explored how the rainbow gives meaning to colour, and how this relates to the temperature of objects. He looked at an array of instances where the rainbow is used; from depicting the life of a star to indicating that we are sick (a thermometer) or when we need to refill a gas cylinder.
Moreover, Prof Kroon pointed out that rainbows are used in computer chips, stress identification, and to transmit internet data through underwater cables of glass fibre. He also referred to how the rainbow was harnessed as an engineering tool to measure refractive index and characterise fine droplet sprays used in industry. 

He continues, “Remarkably, the science developed to understand the natural rainbow can be redirected and applied to the optical properties of metallic nanoparticles, allowing the development of nanotechnology. Knowing how the natural rainbow works and its limitations, better systems have been developed to produce rainbows. Such rainbows have been used to discover new elements and to determine the age of the universe.”

As a member of an international community of phosphor researchers who are privileged to work with rainbows every day, he has used them to study the light-emitting properties of materials doped with bismuth. With this project – an initiative with the African Laser Centre taking place between 2016 and 2021 – he collaborated with the University of Khartoum in Sudan and trained a number of its postgraduate students. “My role included the guidance of students and the measurement and interpretation of the light-emitting properties of the materials. Our research during this time, considering more than a dozen materials, was summarised in 34 scientific publications that contributed to a greater understanding of bismuth ions as light-emitting materials,” he explains. 

Developing new materials, efficient in emitting blue light

He has been developing luminescent materials since 2006, primarily for general lighting (fluorescent tubes and LEDs) and displays (television, computer, and cellphone screens), as well as niche applications in medical and forensic science. 

As part of his current research, he is examining the effect of plasmonic metal nanoparticles on phosphor light emission. He is also exploring materials that absorb infrared light but emit visible light. “For this, I would like to consider the long-term stability of such materials and develop new materials that are more efficient in emitting particularly blue light,” he says. 

Prof Kroon holds a C2 rating from the National Research Foundation and has published more than 150 articles and book chapters, obtaining a Scopus h-index of 26.

News Archive

Heart diseases a time bomb in Africa, says UFS expert
2010-05-17

 Prof. Francis Smit

There are a lot of cardiac problems in Africa. Sub-Saharan Africa is home to the largest population of rheumatic heart disease patients in the world and therefore hosts the largest rheumatic heart valve population in the world. They are more than one million, compared to 33 000 in the whole of the industrialised world, says Prof. Francis Smit, Head of the Department of Cardiothoracic Surgery at the Faculty of Health Sciences at the University of the Free State (UFS).

He delivered an inaugural lecture on the topic Cardiothoracic Surgery: Complex simplicity, or simple complexity?

“We are also sitting on a time bomb of ischemic heart disease with the WHO (World Health Organisation) estimating that CAD (coronary artery disease) will become the number-one killer in our region by 2020. HIV/Aids is expected to go down to number 7.”

Very little is done about it. There is neither a clear nor coordinated programme to address this expected epidemic and CAD is regarded as an expensive disease, confined to Caucasians in the industrialised world. “We are ignoring alarming statistics about incidences of adult obesity, diabetes and endemic hypertension in our black population and a rising incidence of coronary artery interventions and incidents in our indigenous population,” Prof. Smit says.

Outside South Africa – with 44 units – very few units (about seven) perform low volumes of basic cardiac surgery. The South African units at all academic institutions are under severe threat and about 70% of cardiac procedures are performed in the private sector.

He says the main challenge in Africa has become sustainability, which needs to be addressed through education. Cardiothoracic surgery must become part of everyday surgery in Africa through alternative education programmes. That will make this specialty relevant at all levels of healthcare and it must be involved in resource allocation to medicine in general and cardiothoracic surgery specifically.

The African surgeon should make the maximum impact at the lowest possible cost to as many people in a society as possible. “Our training in fields like intensive care and insight into pulmonology, gastroenterology and cardiology give us the possibility of expanding our roles in African medicine. We must also remember that we are trained physicians as well.

“Should people die or suffer tremendously while we can train a group of surgical specialists or retraining general surgeons to expand our impact on cardiothoracic disease in Africa using available technology maybe more creatively? We have made great progress in establishing an African School for Cardiothoracic Surgery.”

Prof. Smit also highlighted the role of the annual Hannes Meyer National Registrar Symposium that culminated in having an eight-strong international panel sponsored by the ICC of EACTS to present a scientific course as well as advanced surgical techniques in conjunction with the Hannes Meyer Symposium in 2010.

Prof. Smit says South Africa is fast becoming the driving force in cardiothoracic surgery in Africa. South Africa is the only country that has the knowledge, technology and skills base to act as the springboard for the development of cardiothoracic surgery in Africa.

South Africa, however, is experiencing its own problems. Mortality has doubled in the years from 1997 to 2005 and half the population in the Free State dies between 40 to 44 years of age.

“If we do not need health professionals to determine the quality and quantity of service delivery to the population and do not want to involve them in this process, we can get rid of them, but then the political leaders making that decision must accept responsibility for the clinical outcomes and life expectancies of their fellow citizens.

“We surely cannot expect to impose the same medical legal principles on professionals working in unsafe hospitals and who have complained and made authorities aware of these conditions than upon those working in functional institutions. Either fixes the institutions or indemnifies medical personnel working in these conditions and defends the decision publicly.

“Why do I have to choose the three out of four patients that cannot have a lifesaving operation and will have to die on their own while the system pretends to deliver treatment to all?”

Prof. Smit says developing a service package with guidelines in the public domain will go a long way towards addressing this issue. It is also about time that we have to admit that things are simply not the same. Standards are deteriorating and training outcomes are or will be affected.

The people who make decisions that affect healthcare service delivery and outcomes, the quality of training platforms and research, in a word, the future of South African medicine, firstly need rules and boundaries. He also suggested that maybe the government should develop health policy in the public domain and then outsource healthcare delivery to people who can actually deliver including thousands of experts employed but ignored by the State at present.

“It is time that we all have to accept our responsibilities at all levels… and act decisively on matters that will determine the quality and quantity of medical care for this and future generations in South Africa and Africa. Time is running out,” Prof. Smit says.
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept