Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 April 2022 | Story Leonie Bolleurs | Photo Stephen Collett
Prof Ted Kroon
Prof Ted Kroon from the Department of Physics recently delivered his inaugural lecture on the topic What’s the use of a rainbow on the UFS Bloemfontein Campus.

“A rainbow is a natural phenomenon, the result of the refraction and reflection of the sun’s rays in drops of rain. As far as mankind is concerned, it’s a perfectly useless object and won’t make anyone money. Yet the poet who said, My heart leaps up when I behold a rainbow in the sky, only put into word the feeling of wonder and excitement we all have when we see a rainbow.”

“Every day I see a rainbow in my work; I do not need to wait to see one in the sky,” says Prof Ted Kroon, Professor in the Department of Physics at the University of the Free State (UFS), who used this phenomenon to introduce the topic of his inaugural lecture: What’s the use of a rainbow. 

“Far from being only a colourful spectacle with no practical value, rainbows are useful – and lead to useful things,” he believes. 

According to Prof Kroon, one can find examples of real rainbows and rainbow analogies used not only in everyday life, but also in physics. “Besides it being familiar devices in literature, culture, and even marketing, studies of rainbows can yield practical engineering information and may even help us to find new habitable planets,” he says.

Inspired by the many uses of a rainbow

In his lecture, he discussed the basic features of natural rainbows and how they come about. He also explored how the rainbow gives meaning to colour, and how this relates to the temperature of objects. He looked at an array of instances where the rainbow is used; from depicting the life of a star to indicating that we are sick (a thermometer) or when we need to refill a gas cylinder.
Moreover, Prof Kroon pointed out that rainbows are used in computer chips, stress identification, and to transmit internet data through underwater cables of glass fibre. He also referred to how the rainbow was harnessed as an engineering tool to measure refractive index and characterise fine droplet sprays used in industry. 

He continues, “Remarkably, the science developed to understand the natural rainbow can be redirected and applied to the optical properties of metallic nanoparticles, allowing the development of nanotechnology. Knowing how the natural rainbow works and its limitations, better systems have been developed to produce rainbows. Such rainbows have been used to discover new elements and to determine the age of the universe.”

As a member of an international community of phosphor researchers who are privileged to work with rainbows every day, he has used them to study the light-emitting properties of materials doped with bismuth. With this project – an initiative with the African Laser Centre taking place between 2016 and 2021 – he collaborated with the University of Khartoum in Sudan and trained a number of its postgraduate students. “My role included the guidance of students and the measurement and interpretation of the light-emitting properties of the materials. Our research during this time, considering more than a dozen materials, was summarised in 34 scientific publications that contributed to a greater understanding of bismuth ions as light-emitting materials,” he explains. 

Developing new materials, efficient in emitting blue light

He has been developing luminescent materials since 2006, primarily for general lighting (fluorescent tubes and LEDs) and displays (television, computer, and cellphone screens), as well as niche applications in medical and forensic science. 

As part of his current research, he is examining the effect of plasmonic metal nanoparticles on phosphor light emission. He is also exploring materials that absorb infrared light but emit visible light. “For this, I would like to consider the long-term stability of such materials and develop new materials that are more efficient in emitting particularly blue light,” he says. 

Prof Kroon holds a C2 rating from the National Research Foundation and has published more than 150 articles and book chapters, obtaining a Scopus h-index of 26.

News Archive

An incident-free recess for the UFS
2010-07-19

The improved security measures at the University of the Free State (UFS) have resulted in an incident-free recess on the Main Campus in Bloemfontein during the 2010 FIFA World Cup and the annual Volksblad Arts Festival.

The UFS provided accommodation for international spectators visiting the country for the World Cup and recently also hosted the hugely popular Volksblad Arts Festival without any security glitches.

These successes could be attributed to the hard work of staff members from various divisions at the UFS to ensure that the security was improved.

“The main question we had to deal with was: should our Main Campus be fenced off? This matter had been under discussion for quite some time. In order to ensure the feasibility thereof, a second impact study was done by a consulting engineer,” said Prof. Niel Viljoen, Vice-Rector: Operations at the UFS.

“This study has shown that, given the nature of activities on the campus and the access configuration, it would be difficult, if not impossible, to effectively control access to the campus, especially as far as visitors were concerned. Any type of access control measure would result in delays at the gates, which could have a major impact on the traffic flow, delays, costs and emissions.”

“It is important that our staff and students feel safe on the Main Campus, whether they are walking on campus or working in their offices. In that way we can ensure an environment that is conducive to staff and students to work and study,” he said.

Various measures are being implemented to make the campuses safer. These include, among others:

  • The installation of alarms in buildings on the Main Campus. The project for the South Campus has been completed and the installation of a new alarm system on the Qwaqwa Campus will start soon.

     
  • Staff and students will be required to wear identification cards once the new identification system has been put in place. These cards will allow access to all buildings.

     
  • Fences around the Main Campus are being repaired and the areas around these fences are being cleaned. This project should be completed by August 2010.

     
  • Lights will be installed in badly lit areas on the Main Campus. The first phase of this project includes the area between the Mooimeisiesfontein, Welwitschia and Vergeet-my-nie residences. This project will also be completed by August 2010.

     
  • The walkways on the Main Campus will be patrolled more frequently and effectively.

     
  • Contracted security workers will be utilised more effectively.

     
  • The monitoring of security cameras on the Main Campus on a 24/7 basis. “For this purpose the security room of our Protection Services is in the process of being upgraded,” said Prof. Viljoen.

The possibility of placing security cameras and panic buttons in parking areas and walkways is investigated.

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
16 July 2010

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept