Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 April 2022 | Story Leonie Bolleurs | Photo Stephen Collett
Prof Ted Kroon
Prof Ted Kroon from the Department of Physics recently delivered his inaugural lecture on the topic What’s the use of a rainbow on the UFS Bloemfontein Campus.

“A rainbow is a natural phenomenon, the result of the refraction and reflection of the sun’s rays in drops of rain. As far as mankind is concerned, it’s a perfectly useless object and won’t make anyone money. Yet the poet who said, My heart leaps up when I behold a rainbow in the sky, only put into word the feeling of wonder and excitement we all have when we see a rainbow.”

“Every day I see a rainbow in my work; I do not need to wait to see one in the sky,” says Prof Ted Kroon, Professor in the Department of Physics at the University of the Free State (UFS), who used this phenomenon to introduce the topic of his inaugural lecture: What’s the use of a rainbow. 

“Far from being only a colourful spectacle with no practical value, rainbows are useful – and lead to useful things,” he believes. 

According to Prof Kroon, one can find examples of real rainbows and rainbow analogies used not only in everyday life, but also in physics. “Besides it being familiar devices in literature, culture, and even marketing, studies of rainbows can yield practical engineering information and may even help us to find new habitable planets,” he says.

Inspired by the many uses of a rainbow

In his lecture, he discussed the basic features of natural rainbows and how they come about. He also explored how the rainbow gives meaning to colour, and how this relates to the temperature of objects. He looked at an array of instances where the rainbow is used; from depicting the life of a star to indicating that we are sick (a thermometer) or when we need to refill a gas cylinder.
Moreover, Prof Kroon pointed out that rainbows are used in computer chips, stress identification, and to transmit internet data through underwater cables of glass fibre. He also referred to how the rainbow was harnessed as an engineering tool to measure refractive index and characterise fine droplet sprays used in industry. 

He continues, “Remarkably, the science developed to understand the natural rainbow can be redirected and applied to the optical properties of metallic nanoparticles, allowing the development of nanotechnology. Knowing how the natural rainbow works and its limitations, better systems have been developed to produce rainbows. Such rainbows have been used to discover new elements and to determine the age of the universe.”

As a member of an international community of phosphor researchers who are privileged to work with rainbows every day, he has used them to study the light-emitting properties of materials doped with bismuth. With this project – an initiative with the African Laser Centre taking place between 2016 and 2021 – he collaborated with the University of Khartoum in Sudan and trained a number of its postgraduate students. “My role included the guidance of students and the measurement and interpretation of the light-emitting properties of the materials. Our research during this time, considering more than a dozen materials, was summarised in 34 scientific publications that contributed to a greater understanding of bismuth ions as light-emitting materials,” he explains. 

Developing new materials, efficient in emitting blue light

He has been developing luminescent materials since 2006, primarily for general lighting (fluorescent tubes and LEDs) and displays (television, computer, and cellphone screens), as well as niche applications in medical and forensic science. 

As part of his current research, he is examining the effect of plasmonic metal nanoparticles on phosphor light emission. He is also exploring materials that absorb infrared light but emit visible light. “For this, I would like to consider the long-term stability of such materials and develop new materials that are more efficient in emitting particularly blue light,” he says. 

Prof Kroon holds a C2 rating from the National Research Foundation and has published more than 150 articles and book chapters, obtaining a Scopus h-index of 26.

News Archive

UFS receives multimillion rand international funding for Advancement
2013-01-21

21 January 2013

We are one of four South African universities that have been selected to take part in a multimillion-rand programme to bolster private fund-raising and Advancement efforts.

The UFS will receive US$640 000 (R5 612 800) over a period of five years to use in advancement efforts.

In total, the US-based Kresge Foundation will make US$2.5 million available to the four universities, which includes the UFS, Durban University of Technology (DUT), Tshwane University of Technology (TUT) and the University of Johannesburg (UJ), over the next five years as part of a joint initiative with Inyathelo: The South African Institute for Advancement, to support the long-term financial sustainability of higher education institutions in South Africa.

Kresge will also provide programmes and support aimed at enhancing student access to universities and improving graduation rates.

Bill Moses, who directs Kresge’s education programme, says declining government support means that South African university officials need to tap into diversified philanthropic and private funding if they want to enhance their institutions’ ability to serve students better. “Stronger Advancement skills are critical to their success and ultimately to getting more South African students into universities and completing degrees. Advancement is not just about raising funds. It is the practice of building, maintaining and improving support, skills and other resources to ensure the sustainability of an institution,” explains Moses.

 This latest Kresge initiative follows the success of a five-year partnership with Inyathelo that helped five high-profile South African institutions - the University of the Witwatersrand (Wits); the University of Pretoria (UP); the University of the Western Cape (UWC); the Cape Peninsula University of Technology (CPUT) and the Children’s Hospital Trust - increase their private fund-raising revenue threefold. The four universities will receive additional funding over the next five years and will serve as mentors to the new group of institutions.

In April last year, Kresge announced a new commitment to South African higher education that builds on its efforts in the United States to improve university access and help students succeed academically. Their ‘Promoting access and success at South African universities’ programme will seek to strengthen pathways to and through universities, especially for students who are often unprepared for university study. Moses says enhancing the ability of universities in South Africa to graduate the next generation of knowledge workers, will make it possible for the country to compete more effectively in the global economy. “Access to higher education in South Africa has improved dramatically since the end of Apartheid. A doubling of enrolment since 1994 has, however, contributed to serious challenges, including under-prepared students and disappointing graduation rates. We are confident that our programme will help address some of these obstacles to success,” says Moses.

Kresge has already funded several efforts that support its interest in strengthening pathways to and through universities this year, including a grant to the University of the Free State to expand the South African Survey of Student Engagement, as well as funding to the University of Pretoria to support a conference in January, which will highlight opportunities to promote access and success at South African universities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept