Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 April 2022 | Story Leonie Bolleurs | Photo Stephen Collett
Prof Ted Kroon
Prof Ted Kroon from the Department of Physics recently delivered his inaugural lecture on the topic What’s the use of a rainbow on the UFS Bloemfontein Campus.

“A rainbow is a natural phenomenon, the result of the refraction and reflection of the sun’s rays in drops of rain. As far as mankind is concerned, it’s a perfectly useless object and won’t make anyone money. Yet the poet who said, My heart leaps up when I behold a rainbow in the sky, only put into word the feeling of wonder and excitement we all have when we see a rainbow.”

“Every day I see a rainbow in my work; I do not need to wait to see one in the sky,” says Prof Ted Kroon, Professor in the Department of Physics at the University of the Free State (UFS), who used this phenomenon to introduce the topic of his inaugural lecture: What’s the use of a rainbow. 

“Far from being only a colourful spectacle with no practical value, rainbows are useful – and lead to useful things,” he believes. 

According to Prof Kroon, one can find examples of real rainbows and rainbow analogies used not only in everyday life, but also in physics. “Besides it being familiar devices in literature, culture, and even marketing, studies of rainbows can yield practical engineering information and may even help us to find new habitable planets,” he says.

Inspired by the many uses of a rainbow

In his lecture, he discussed the basic features of natural rainbows and how they come about. He also explored how the rainbow gives meaning to colour, and how this relates to the temperature of objects. He looked at an array of instances where the rainbow is used; from depicting the life of a star to indicating that we are sick (a thermometer) or when we need to refill a gas cylinder.
Moreover, Prof Kroon pointed out that rainbows are used in computer chips, stress identification, and to transmit internet data through underwater cables of glass fibre. He also referred to how the rainbow was harnessed as an engineering tool to measure refractive index and characterise fine droplet sprays used in industry. 

He continues, “Remarkably, the science developed to understand the natural rainbow can be redirected and applied to the optical properties of metallic nanoparticles, allowing the development of nanotechnology. Knowing how the natural rainbow works and its limitations, better systems have been developed to produce rainbows. Such rainbows have been used to discover new elements and to determine the age of the universe.”

As a member of an international community of phosphor researchers who are privileged to work with rainbows every day, he has used them to study the light-emitting properties of materials doped with bismuth. With this project – an initiative with the African Laser Centre taking place between 2016 and 2021 – he collaborated with the University of Khartoum in Sudan and trained a number of its postgraduate students. “My role included the guidance of students and the measurement and interpretation of the light-emitting properties of the materials. Our research during this time, considering more than a dozen materials, was summarised in 34 scientific publications that contributed to a greater understanding of bismuth ions as light-emitting materials,” he explains. 

Developing new materials, efficient in emitting blue light

He has been developing luminescent materials since 2006, primarily for general lighting (fluorescent tubes and LEDs) and displays (television, computer, and cellphone screens), as well as niche applications in medical and forensic science. 

As part of his current research, he is examining the effect of plasmonic metal nanoparticles on phosphor light emission. He is also exploring materials that absorb infrared light but emit visible light. “For this, I would like to consider the long-term stability of such materials and develop new materials that are more efficient in emitting particularly blue light,” he says. 

Prof Kroon holds a C2 rating from the National Research Foundation and has published more than 150 articles and book chapters, obtaining a Scopus h-index of 26.

News Archive

Inaugural lecture celebrates Qwaqwa founder, Morena Mopeli Mokhachane
2014-09-12

 

Photo: RooistoelTV

Every historical era presents its own challenges and creates its own leaders who take up the call to address those challenges.

This was expressed by Dr Nyefolo Malete who presented the Inaugural Memorial Lecture on 6 September 2014 at the Qwaqwa Campus. The lecture honoured the live of the Qwaqwa founder, Morena Paulus Mopeli Mokhachane.

Dr Malete said that Morena Mopeli played his part in history as a skilled negotiator, formidable team player and a liberator who held good human relations in high regard.

“Morena Mopeli lived at the time when Southern Africa was experiencing a moment of frustration and despair. It was faced with conflicts, battles, starvation and turmoil in preparation for a transformation that was to serve as the mirror of the political and social stage which existed until 1994,” Dr Malete said.

“He was a hopeful leader and thinker who played a critical role in assisting his brother Moshoeshoe to build and protect Lesotho where it was humanly possible. He participated in most of the negotiations with all the groups to create peace and protect the borders of Lesotho. He was a good, intelligent and formidable diplomat who was aware of his role as a leader. He was aware that he could influence the future through dialogue.”

Dr Malete said that Africa needs leaders like Mopeli. Leaders who can expand the capacity to remain open to possibilities and “envision a positive future in the face of uncertainty and to creatively construct pathways that can be embraced by all people who collectively seek to turn possibilities into reality.”

In attendance at the lecture were dignitaries from the Lesotho Royal House, the Free State Provincial Government and the Free State House of Traditional Leaders. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept