Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 April 2022 | Story Leonie Bolleurs | Photo Stephen Collett
Prof Ted Kroon
Prof Ted Kroon from the Department of Physics recently delivered his inaugural lecture on the topic What’s the use of a rainbow on the UFS Bloemfontein Campus.

“A rainbow is a natural phenomenon, the result of the refraction and reflection of the sun’s rays in drops of rain. As far as mankind is concerned, it’s a perfectly useless object and won’t make anyone money. Yet the poet who said, My heart leaps up when I behold a rainbow in the sky, only put into word the feeling of wonder and excitement we all have when we see a rainbow.”

“Every day I see a rainbow in my work; I do not need to wait to see one in the sky,” says Prof Ted Kroon, Professor in the Department of Physics at the University of the Free State (UFS), who used this phenomenon to introduce the topic of his inaugural lecture: What’s the use of a rainbow. 

“Far from being only a colourful spectacle with no practical value, rainbows are useful – and lead to useful things,” he believes. 

According to Prof Kroon, one can find examples of real rainbows and rainbow analogies used not only in everyday life, but also in physics. “Besides it being familiar devices in literature, culture, and even marketing, studies of rainbows can yield practical engineering information and may even help us to find new habitable planets,” he says.

Inspired by the many uses of a rainbow

In his lecture, he discussed the basic features of natural rainbows and how they come about. He also explored how the rainbow gives meaning to colour, and how this relates to the temperature of objects. He looked at an array of instances where the rainbow is used; from depicting the life of a star to indicating that we are sick (a thermometer) or when we need to refill a gas cylinder.
Moreover, Prof Kroon pointed out that rainbows are used in computer chips, stress identification, and to transmit internet data through underwater cables of glass fibre. He also referred to how the rainbow was harnessed as an engineering tool to measure refractive index and characterise fine droplet sprays used in industry. 

He continues, “Remarkably, the science developed to understand the natural rainbow can be redirected and applied to the optical properties of metallic nanoparticles, allowing the development of nanotechnology. Knowing how the natural rainbow works and its limitations, better systems have been developed to produce rainbows. Such rainbows have been used to discover new elements and to determine the age of the universe.”

As a member of an international community of phosphor researchers who are privileged to work with rainbows every day, he has used them to study the light-emitting properties of materials doped with bismuth. With this project – an initiative with the African Laser Centre taking place between 2016 and 2021 – he collaborated with the University of Khartoum in Sudan and trained a number of its postgraduate students. “My role included the guidance of students and the measurement and interpretation of the light-emitting properties of the materials. Our research during this time, considering more than a dozen materials, was summarised in 34 scientific publications that contributed to a greater understanding of bismuth ions as light-emitting materials,” he explains. 

Developing new materials, efficient in emitting blue light

He has been developing luminescent materials since 2006, primarily for general lighting (fluorescent tubes and LEDs) and displays (television, computer, and cellphone screens), as well as niche applications in medical and forensic science. 

As part of his current research, he is examining the effect of plasmonic metal nanoparticles on phosphor light emission. He is also exploring materials that absorb infrared light but emit visible light. “For this, I would like to consider the long-term stability of such materials and develop new materials that are more efficient in emitting particularly blue light,” he says. 

Prof Kroon holds a C2 rating from the National Research Foundation and has published more than 150 articles and book chapters, obtaining a Scopus h-index of 26.

News Archive

UFS hosts first SA Digital Sky Academy at the Naval Hill Planetarium
2015-10-02


From the left are: Prof Neil Heideman
(Dean: Faculty of Natural and Agricultural Sciences, UFS),
Jack White (Director: Sky-Skan Oceania),
Dr Michelle Cluver (Department of Astronomy, University of the Western Cape),
Martin Ratcliffe (Director: Professional Development, Sky-Skan).
Photo: Mart-Mari Duvenhage

South Africa hosts some of the world’s largest telescopes, and won the bid to co-host the SKA recently. So it’s not surprising that there is unprecedented interest in Astronomy in our country. Astronomy is seen as a gateway subject that attracts people to the sciences, while planetariums help to make Astronomy accessible to millions of people.  Digital planetariums are especially powerful teaching tools because they are versatile, offer an immersive experience, and explain and illustrate three-dimensional concepts effectively.  On the other hand, scientists, are eager to exploit a digital planetarium’s potential to represent and explore data visually, whether the data relate to medicine, astronomy, chemistry, the environment, or other fields of research.

The four-day ‘Digital Sky Academy’ (DSA) presented at the Naval Hill Planetarium in Bloemfontein from 18 - 22 September 2015 was an opportunity to offer training and first-hand experience of digital planetarium technology to representatives from other centres in South Africa. The Department of Physics at the University of the Free State (UFS) was the host of this event.

The Department of Science and Technology has designated the Naval Hill Planetarium as the South African hub for the training of digital planetarium presenters and operators. In addition to attracting interest from scientists and future planetarium operators and presenters, the DSA workshop provided an invaluable opportunity for our presenters to hone their skills.

A number of experienced and distinguished people attended the workshop. Among them was Dr Mark SubbaRao from Chicago in the United States, who shared information on data visualisation techniques used in the Adler Planetarium. Jack White, Director of Sky-Skan, one of the few companies that provide digital technology for planetariums throughout the world, coordinated the event in partnership with Prof Matie Hoffman from the Department of Physics at the UFS.

Jack travelled from Melbourne in Australia to oversee the workshop. Two Sky-Skan colleagues from the United States, Martin Weiss and Martin Ratcliffe, were on hand to share their expertise on digital planetarium hardware and software. The workshop programme included Skype conference calls with other US-based planetarium experts. Amongst the delegates to the DSA representatives from the SKA, the Iziko Museum, and five South Africa universities. They were here to gain experience, explore the capacity of the digital facility, and share ideas on future collaboration.

During the workshop, a public lecture was held on 19 September. Dr Michelle Cluver from the University of the Western Cape gave a presentation entitled, ‘More than the eye can see: the significance of infrared light in Astronomy.’

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept