Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 April 2022 | Story Leonie Bolleurs | Photo Stephen Collett
Prof Ted Kroon
Prof Ted Kroon from the Department of Physics recently delivered his inaugural lecture on the topic What’s the use of a rainbow on the UFS Bloemfontein Campus.

“A rainbow is a natural phenomenon, the result of the refraction and reflection of the sun’s rays in drops of rain. As far as mankind is concerned, it’s a perfectly useless object and won’t make anyone money. Yet the poet who said, My heart leaps up when I behold a rainbow in the sky, only put into word the feeling of wonder and excitement we all have when we see a rainbow.”

“Every day I see a rainbow in my work; I do not need to wait to see one in the sky,” says Prof Ted Kroon, Professor in the Department of Physics at the University of the Free State (UFS), who used this phenomenon to introduce the topic of his inaugural lecture: What’s the use of a rainbow. 

“Far from being only a colourful spectacle with no practical value, rainbows are useful – and lead to useful things,” he believes. 

According to Prof Kroon, one can find examples of real rainbows and rainbow analogies used not only in everyday life, but also in physics. “Besides it being familiar devices in literature, culture, and even marketing, studies of rainbows can yield practical engineering information and may even help us to find new habitable planets,” he says.

Inspired by the many uses of a rainbow

In his lecture, he discussed the basic features of natural rainbows and how they come about. He also explored how the rainbow gives meaning to colour, and how this relates to the temperature of objects. He looked at an array of instances where the rainbow is used; from depicting the life of a star to indicating that we are sick (a thermometer) or when we need to refill a gas cylinder.
Moreover, Prof Kroon pointed out that rainbows are used in computer chips, stress identification, and to transmit internet data through underwater cables of glass fibre. He also referred to how the rainbow was harnessed as an engineering tool to measure refractive index and characterise fine droplet sprays used in industry. 

He continues, “Remarkably, the science developed to understand the natural rainbow can be redirected and applied to the optical properties of metallic nanoparticles, allowing the development of nanotechnology. Knowing how the natural rainbow works and its limitations, better systems have been developed to produce rainbows. Such rainbows have been used to discover new elements and to determine the age of the universe.”

As a member of an international community of phosphor researchers who are privileged to work with rainbows every day, he has used them to study the light-emitting properties of materials doped with bismuth. With this project – an initiative with the African Laser Centre taking place between 2016 and 2021 – he collaborated with the University of Khartoum in Sudan and trained a number of its postgraduate students. “My role included the guidance of students and the measurement and interpretation of the light-emitting properties of the materials. Our research during this time, considering more than a dozen materials, was summarised in 34 scientific publications that contributed to a greater understanding of bismuth ions as light-emitting materials,” he explains. 

Developing new materials, efficient in emitting blue light

He has been developing luminescent materials since 2006, primarily for general lighting (fluorescent tubes and LEDs) and displays (television, computer, and cellphone screens), as well as niche applications in medical and forensic science. 

As part of his current research, he is examining the effect of plasmonic metal nanoparticles on phosphor light emission. He is also exploring materials that absorb infrared light but emit visible light. “For this, I would like to consider the long-term stability of such materials and develop new materials that are more efficient in emitting particularly blue light,” he says. 

Prof Kroon holds a C2 rating from the National Research Foundation and has published more than 150 articles and book chapters, obtaining a Scopus h-index of 26.

News Archive

UFS doctors fight childhood cancer
2016-09-02

Description: Childhood cancer  Tags: Childhood cancer

Prof David Stones and Dr Jan du Plessis of the
University of Free State’s paediatric oncology ward
are helping little lives, one patient at a time.
Photo: Nonsindiso Qwabe

Of 23 paediatric oncology specialists nationally, Prof David Stones and Dr Jan du Plessis of the University of Free State are the only ones in the province.

Committed to giving holistic care to their patients, the two doctors specialise in all types of childhood cancers, the most common being leukaemia, brain tumour, and nephroblastoma.

They describe the childhood malignancy as a lethal disease, unpredictability being its harshest trait. “With cancer, you can just never know. It precipitates and multiplies, and leads to the failure of other organs. You can just always hope, and keep trying,” said Du Plessis.

The paediatric oncology unit of the Universitas Academic Hospital, their unit, is the liveliest floor in the entire building. It is also the third busiest in South Africa, serving a demographic that spans the Free State and Northern Cape, as well as parts of North West, Eastern Cape and Lesotho.

Each year, the unit receives more than 100 new childhood cancer patients. In 2015, the unit had 113 newly diagnosed patients, an increase from 93 in 2014.

Lack of knowledge poses a serious challenge
According to the two experts, the lack of insight and awareness of the disease remain a big challenge to fighting it. “It is frustrating. Parents and family members don’t know anything about it. Nurses and doctors aren’t always clinically trained to pick up the early warning signs. By the time a diagnosis is made, life and death is on a 50% margin,” Stones said.

Poverty, a lack of resources, overcrowding and a range of health issues are other factors that have a profound effect on the diagnosis and treatment of the disease.

Making a contribution that will last
With a desire to see an improvement on life outcomes in the health sector, the team is focusing on educating the country’s doctors of tomorrow. Their unit is the only one in the country that actively involves medical students in an oncology unit, giving them practical experience and exposure to the individual cases each patient presents. They have also produced a substantial amount of research literature on childhood malignancies in South Africa as a developing country.

Driven by passion to see a better South Africa
The doctors are passionate about the work they do, and remain hopeful there will be a change in the incidence of childhood cancer   not just in decreased levels of the disease, but also in the overall state of well-being of young South Africans.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept