Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 April 2022 | Story Leonie Bolleurs | Photo Stephen Collett
Prof Ted Kroon
Prof Ted Kroon from the Department of Physics recently delivered his inaugural lecture on the topic What’s the use of a rainbow on the UFS Bloemfontein Campus.

“A rainbow is a natural phenomenon, the result of the refraction and reflection of the sun’s rays in drops of rain. As far as mankind is concerned, it’s a perfectly useless object and won’t make anyone money. Yet the poet who said, My heart leaps up when I behold a rainbow in the sky, only put into word the feeling of wonder and excitement we all have when we see a rainbow.”

“Every day I see a rainbow in my work; I do not need to wait to see one in the sky,” says Prof Ted Kroon, Professor in the Department of Physics at the University of the Free State (UFS), who used this phenomenon to introduce the topic of his inaugural lecture: What’s the use of a rainbow. 

“Far from being only a colourful spectacle with no practical value, rainbows are useful – and lead to useful things,” he believes. 

According to Prof Kroon, one can find examples of real rainbows and rainbow analogies used not only in everyday life, but also in physics. “Besides it being familiar devices in literature, culture, and even marketing, studies of rainbows can yield practical engineering information and may even help us to find new habitable planets,” he says.

Inspired by the many uses of a rainbow

In his lecture, he discussed the basic features of natural rainbows and how they come about. He also explored how the rainbow gives meaning to colour, and how this relates to the temperature of objects. He looked at an array of instances where the rainbow is used; from depicting the life of a star to indicating that we are sick (a thermometer) or when we need to refill a gas cylinder.
Moreover, Prof Kroon pointed out that rainbows are used in computer chips, stress identification, and to transmit internet data through underwater cables of glass fibre. He also referred to how the rainbow was harnessed as an engineering tool to measure refractive index and characterise fine droplet sprays used in industry. 

He continues, “Remarkably, the science developed to understand the natural rainbow can be redirected and applied to the optical properties of metallic nanoparticles, allowing the development of nanotechnology. Knowing how the natural rainbow works and its limitations, better systems have been developed to produce rainbows. Such rainbows have been used to discover new elements and to determine the age of the universe.”

As a member of an international community of phosphor researchers who are privileged to work with rainbows every day, he has used them to study the light-emitting properties of materials doped with bismuth. With this project – an initiative with the African Laser Centre taking place between 2016 and 2021 – he collaborated with the University of Khartoum in Sudan and trained a number of its postgraduate students. “My role included the guidance of students and the measurement and interpretation of the light-emitting properties of the materials. Our research during this time, considering more than a dozen materials, was summarised in 34 scientific publications that contributed to a greater understanding of bismuth ions as light-emitting materials,” he explains. 

Developing new materials, efficient in emitting blue light

He has been developing luminescent materials since 2006, primarily for general lighting (fluorescent tubes and LEDs) and displays (television, computer, and cellphone screens), as well as niche applications in medical and forensic science. 

As part of his current research, he is examining the effect of plasmonic metal nanoparticles on phosphor light emission. He is also exploring materials that absorb infrared light but emit visible light. “For this, I would like to consider the long-term stability of such materials and develop new materials that are more efficient in emitting particularly blue light,” he says. 

Prof Kroon holds a C2 rating from the National Research Foundation and has published more than 150 articles and book chapters, obtaining a Scopus h-index of 26.

News Archive

UFS awarded five South African Research Chairs
2016-09-30

Description: South African Research Chairs Tags: South African Research Chairs

From left to right, Prof Maryke Labuschagne,
Prof Corli Witthuhn (Vice-Rector: Research),
Prof Hendrik Swart and Prof Felicity Burt.

The UFS was awarded five SARChI (South African Research Chairs Initiative) research chairs, the main goal of which is to promote research excellence. In addition, there has been an increase in the rating of the University’s researchers as the result of raised academic standards over the past few years, in line with the UFS’s Academic Project. As of 2016 the UFS has 127 NRF-rated researchers.

The following research chairs have been awarded to the UFS since 2013:

Prof Hendrik Swart from the Department of Physics is the research chair of Solid State Luminescent and Advanced Materials (2013-2017). Prof Swart’s research may assist in reducing vulnerability and contributing to poverty alleviation by providing affordable lighting for people in rural areas through fabricating phosphors and the development of nanophosphors.

Prof Maryke Labuschagne from the Department of Plant Sciences is the research chair of Disease Resistance and Quality in Field Crops (2016-2020). Prof Labuschagne believes that food security is one of the key factors for stability and prosperity on the continent. Her research and that of her students focuses on the genetic improvement of food security crops in Africa, including such staples as maize and cassava.

Research Chairs have been designed, to attract
and retain excellence in research and innovation
at South African universities.

Prof Melanie Walker, from the Department of Higher Education and Human Development, was awarded the research chair from 2013 to 2017. Prof Walker’s research interrogates the role of higher education in order to advance human development and justice in education and society, especially in relation to severe inequalities and poverty. Significantly, it asks what kind of societies we want, what is important in a democratic society, and thus, what kind of higher education is valuable, relevant and desirable.

Prof Felicity Burt from the Department of Medical Microbiology was recently awarded the research chair from 2016 to 2020, to investigate medically significant vector-borne and zoonotic viruses currently; to define associations between these viruses and specific disease manifestations that have previously not been described in our region, to increase awareness of these pathogens; to further our understanding of host immune responses, which should facilitate development of novel treatments or vaccines and drug discovery.

The Humanities without Borders: Trauma, History and Memory research chair was awarded from 2016 to 2020. The Institute for Social Justice and Reconciliation will use this research chair to investigate historical trauma within two African contexts – those of South Africa and Rwanda. The research hopes to bring insight into the role that memory plays in the formation of the experience of trauma, and to bring about healing of the trauma.

Research Chairs have been designed by the Department of Science and Technology, together with the National Research Foundation, to attract and retain excellence in research and innovation at South African public universities.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept