Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 April 2022 | Story Leonie Bolleurs | Photo Stephen Collett
Prof Ted Kroon
Prof Ted Kroon from the Department of Physics recently delivered his inaugural lecture on the topic What’s the use of a rainbow on the UFS Bloemfontein Campus.

“A rainbow is a natural phenomenon, the result of the refraction and reflection of the sun’s rays in drops of rain. As far as mankind is concerned, it’s a perfectly useless object and won’t make anyone money. Yet the poet who said, My heart leaps up when I behold a rainbow in the sky, only put into word the feeling of wonder and excitement we all have when we see a rainbow.”

“Every day I see a rainbow in my work; I do not need to wait to see one in the sky,” says Prof Ted Kroon, Professor in the Department of Physics at the University of the Free State (UFS), who used this phenomenon to introduce the topic of his inaugural lecture: What’s the use of a rainbow. 

“Far from being only a colourful spectacle with no practical value, rainbows are useful – and lead to useful things,” he believes. 

According to Prof Kroon, one can find examples of real rainbows and rainbow analogies used not only in everyday life, but also in physics. “Besides it being familiar devices in literature, culture, and even marketing, studies of rainbows can yield practical engineering information and may even help us to find new habitable planets,” he says.

Inspired by the many uses of a rainbow

In his lecture, he discussed the basic features of natural rainbows and how they come about. He also explored how the rainbow gives meaning to colour, and how this relates to the temperature of objects. He looked at an array of instances where the rainbow is used; from depicting the life of a star to indicating that we are sick (a thermometer) or when we need to refill a gas cylinder.
Moreover, Prof Kroon pointed out that rainbows are used in computer chips, stress identification, and to transmit internet data through underwater cables of glass fibre. He also referred to how the rainbow was harnessed as an engineering tool to measure refractive index and characterise fine droplet sprays used in industry. 

He continues, “Remarkably, the science developed to understand the natural rainbow can be redirected and applied to the optical properties of metallic nanoparticles, allowing the development of nanotechnology. Knowing how the natural rainbow works and its limitations, better systems have been developed to produce rainbows. Such rainbows have been used to discover new elements and to determine the age of the universe.”

As a member of an international community of phosphor researchers who are privileged to work with rainbows every day, he has used them to study the light-emitting properties of materials doped with bismuth. With this project – an initiative with the African Laser Centre taking place between 2016 and 2021 – he collaborated with the University of Khartoum in Sudan and trained a number of its postgraduate students. “My role included the guidance of students and the measurement and interpretation of the light-emitting properties of the materials. Our research during this time, considering more than a dozen materials, was summarised in 34 scientific publications that contributed to a greater understanding of bismuth ions as light-emitting materials,” he explains. 

Developing new materials, efficient in emitting blue light

He has been developing luminescent materials since 2006, primarily for general lighting (fluorescent tubes and LEDs) and displays (television, computer, and cellphone screens), as well as niche applications in medical and forensic science. 

As part of his current research, he is examining the effect of plasmonic metal nanoparticles on phosphor light emission. He is also exploring materials that absorb infrared light but emit visible light. “For this, I would like to consider the long-term stability of such materials and develop new materials that are more efficient in emitting particularly blue light,” he says. 

Prof Kroon holds a C2 rating from the National Research Foundation and has published more than 150 articles and book chapters, obtaining a Scopus h-index of 26.

News Archive

UFS congratulates Free State on matric results
2017-01-05

 Description: 002 IBP Matric results Tags: 002 IBP Matric results

With projects like the Internet Broadcast Project and the
Schools Partnership Projects the UFS helps to improve
education at schools in the Free State.
Photo: iStock

The University of the Free State (UFS) congratulates the Free State and its learners on their outstanding performance in the 2016 matric results. The university, who also plays a role in promoting excellence at school level, is proud of the Free State’s achievement as the best-performing province in the country with a 93,2% pass rate, excluding progressed learners.

“On behalf of the university community I would like to congratulate the Free State MEC of Education, Tate Makgoe, who is also a member of the UFS Council, and the Department of Education in the province on this fine achievement. The UFS is proud to be involved in projects that contribute to the success of the province’s learners. These include the Internet Broadcast Project (IBP) and the Schools Partnership Projects (SPP). The projects help to improve the quality of teaching and help learners to overcome severe domestic conditions in rural areas,” says Prof Nicky Morgan, Acting Vice-Chancellor and Rector of the UFS.

Internet Broadcast Project

The UFS IDEAS Lab in the Department of Open and Distance Learning on the UFS South Campus supports learners in 83 schools through the IBP with the help of academic videos. The project is a collaboration between the university and the Department of Education in the province. It includes support for subjects such as Mathematics, Physical Science, Life Science, Economics, Accounting, and Geography.

A purpose-built school appliance, comprising a projector, speakers, and a PC, is set up at each school, where learners receive video lectures from highly-qualified teachers.

During a function held in Bloemfontein on 5 January 2017 to congratulate performing schools in the province, Mr Makgoe made special mention of the IBP and said that part of the success of the province can be attributed to the project. Many of the top performing schools had learners who participated in the project. One of the districts that forms part of the project, the Xhariep District, was announced as the top performing district in the province, and is second in the country.


Schools Partnership Projects

The SPP focuses on teachers in order to have a more sustainable impact, with 69 schools in the Free State and Eastern Cape being part of it.

It makes use of mentors (30) who assist teachers and headmasters with school management, Mathematics, Physical Science, Accounting, and English as language of learning. The project has an annual budget of more than R15 million – all the funds come from sponsors outside the UFS.

Mentors visit schools and share knowledge, extra material, and technology to improve the standard of teaching. The change has been significant. Matric results and Bachelors pass rates have improved dramatically in these schools.

Another aspect is the identification of learners with potential (so-called first-generation students) to go to university. They are assisted through extra classes and in applying for tertiary education and bursaries.

Many of them currently study at the UFS, and also receive mentorship at university.

Dr Peet Venter, SPP Project Manager, said his team is proud to be part of the process of helping the Free State to become the number one province in the country again.

Both the IBP and SPP was started in 2011 and are managed from the university’s South Campus in Bloemfontein.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept