Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
18 April 2022 | Story Leonie Bolleurs | Photo Stephen Collett
Prof Ted Kroon
Prof Ted Kroon from the Department of Physics recently delivered his inaugural lecture on the topic What’s the use of a rainbow on the UFS Bloemfontein Campus.

“A rainbow is a natural phenomenon, the result of the refraction and reflection of the sun’s rays in drops of rain. As far as mankind is concerned, it’s a perfectly useless object and won’t make anyone money. Yet the poet who said, My heart leaps up when I behold a rainbow in the sky, only put into word the feeling of wonder and excitement we all have when we see a rainbow.”

“Every day I see a rainbow in my work; I do not need to wait to see one in the sky,” says Prof Ted Kroon, Professor in the Department of Physics at the University of the Free State (UFS), who used this phenomenon to introduce the topic of his inaugural lecture: What’s the use of a rainbow. 

“Far from being only a colourful spectacle with no practical value, rainbows are useful – and lead to useful things,” he believes. 

According to Prof Kroon, one can find examples of real rainbows and rainbow analogies used not only in everyday life, but also in physics. “Besides it being familiar devices in literature, culture, and even marketing, studies of rainbows can yield practical engineering information and may even help us to find new habitable planets,” he says.

Inspired by the many uses of a rainbow

In his lecture, he discussed the basic features of natural rainbows and how they come about. He also explored how the rainbow gives meaning to colour, and how this relates to the temperature of objects. He looked at an array of instances where the rainbow is used; from depicting the life of a star to indicating that we are sick (a thermometer) or when we need to refill a gas cylinder.
Moreover, Prof Kroon pointed out that rainbows are used in computer chips, stress identification, and to transmit internet data through underwater cables of glass fibre. He also referred to how the rainbow was harnessed as an engineering tool to measure refractive index and characterise fine droplet sprays used in industry. 

He continues, “Remarkably, the science developed to understand the natural rainbow can be redirected and applied to the optical properties of metallic nanoparticles, allowing the development of nanotechnology. Knowing how the natural rainbow works and its limitations, better systems have been developed to produce rainbows. Such rainbows have been used to discover new elements and to determine the age of the universe.”

As a member of an international community of phosphor researchers who are privileged to work with rainbows every day, he has used them to study the light-emitting properties of materials doped with bismuth. With this project – an initiative with the African Laser Centre taking place between 2016 and 2021 – he collaborated with the University of Khartoum in Sudan and trained a number of its postgraduate students. “My role included the guidance of students and the measurement and interpretation of the light-emitting properties of the materials. Our research during this time, considering more than a dozen materials, was summarised in 34 scientific publications that contributed to a greater understanding of bismuth ions as light-emitting materials,” he explains. 

Developing new materials, efficient in emitting blue light

He has been developing luminescent materials since 2006, primarily for general lighting (fluorescent tubes and LEDs) and displays (television, computer, and cellphone screens), as well as niche applications in medical and forensic science. 

As part of his current research, he is examining the effect of plasmonic metal nanoparticles on phosphor light emission. He is also exploring materials that absorb infrared light but emit visible light. “For this, I would like to consider the long-term stability of such materials and develop new materials that are more efficient in emitting particularly blue light,” he says. 

Prof Kroon holds a C2 rating from the National Research Foundation and has published more than 150 articles and book chapters, obtaining a Scopus h-index of 26.

News Archive

Third NRF A-rated researcher for UFS
2017-02-03

Description: Prof Jansen, NRF A-rated researcher  Tags: Prof Jansen, NRF A-rated researcher

Prof Jonathan Jansen, senior researcher at the UFS
Faculty of Education, recently joined two other
UFS researchers as NRF A-rated researchers.
They from the left are: Profs Melanie Walker, Maxim Finkelstein
and Jansen.
Photo: Charl Devenish

The University of the Free State received its third A-rating from the National Research Foundation (NRF) when Prof Jonathan Jansen was awarded an A2-rating.

Prof Jansen is a Senior Research Professor in Education secondary research field and field of specialisation: Development education and Curriculum theory at the UFS Faculty of Education and Fellow at the Center for Advanced Studies at Stanford University in the US.

Prof Jansen’s rating follows P-rating
Prof Jansen’s rating also adds to the recent P-rating awarded to Dr Daniel Spence, a postdoctoral Research Fellow at the International Studies Group. In receiving the rating, the UFS became the only university in South Africa with a P-rated researcher in History.

P-ratings are given to young researchers, usually under the age of 35, who have the potential to become leaders in their field. Researchers in this group are recognised by all, or the overwhelming majority of, reviewers, as having demonstrated the potential to become future international leaders. 

“Obtaining another A-rating is indicative of the university’s drive to enhance its research profile – nationally as well as internationally. I am thankful to our scholars for their commitment to the rating process and look forward to receive the results of this year’s ratings,” said Prof Corli Witthuhn, Vice-Rector: Research at the UFS.   

Total number of researchers increased
The UFS has also upped the ante with regards to its total number of NRF-rated researchers during the latest rating and evaluation with an increase from 127 in 2015 to 149 rated researchers in 2016.

In 2015, Prof Maxim Finkelstein from the Department of Mathematical Statistics and Actuarial Science, and Prof Melanie Walker, Senior Research Professor and Director of the Centre for Research on Higher Education and Development, were given A-ratings.

Prof Finkelstein’s rating then made him the only A-rated researcher in ‘Probability and Statistics’ regarding Mathematical Sciences in the country. Prof Walker was evaluated and graded in the division for Research, Innovation Support and Advancement.

According to the NRF, A-rated researchers are “unequivocally recognised by their peers as leading international scholars in their field for the high quality and impact of their recent research outputs”.

 

The rating of individuals is based primarily on the quality and impact of their research over the past eight years.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept