Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 August 2022 | Story NONSINDISO QWABE | Photo Boitumelo Molefe
Prof Geofrey Mukwada
Prof Geofrey Mukwada from the Department of Geography on the Qwaqwa Campus delivered his inaugural lecture, which focused on elevation-dependent warming in the Drakensberg Mountain region.

South Africa is generally regarded as a thirsty country due to water scarcity nationally. Even a rise of 0,5 °C in climate temperatures could have devastating effects on the environment.

Delivering his inaugural lecture on 22 August 2022 – a first for the Qwaqwa Campus in many years – Prof Geofrey Mukwada of the Department of Geography at the University of the Free State (UFS) Qwaqwa Campus painted a picture of the long-term effects of climate change on ecological, social, and economic aspects of the environment. The effects of climate change are being felt in all regions of the world, and the Drakensberg region in particular is beginning to bear the brunt.

Elevation-dependent warming a threat to socio-ecological systems

Introducing his topic, The last days of plenty: an assessment of elevation-dependent warming in the Drakensberg Mountain region between 1980 and 2018 and its potential implications for social-ecological systems in the region and downstream communities, Prof Mukwada said ‘last days’ was a euphemism used figuratively to imply the impending loss of environmental resources in the mountains because of climate change.

According to Prof Mukwada, elevation-dependent warming in the Drakensberg would pose serious implications for the overall rural livelihoods, regional trade, and biodiversity conservation.

“The Drakensberg Mountains is made up of a chain of several mountains and is home to a lot of activities. It is important for rural livelihood, including agriculture, cultivation of different forms, fisheries, and tourism, and if the climate is therefore changing and elevation-dependent warming is taking place, we see a threat to socio-ecological systems in many ways.”

In his lecture, Prof Mukwada discussed the three-decade-long investigation to determine if elevation-dependent warming is taking place at several points of the mountains, and to assess its environmental implications for the region and downstream communities. Using a time-series analysis standardised precipitation and evaporation index (SPEI) and monthly maximum temperature and locational and elevation data, the investigation monitored climate change trends between 1980 and 2018.

Development of research-based solutions

He said results did not confirm the existence of elevation-dependent warming in the Drakensberg Mountain region, but statistically significant evidence has shown that the region is becoming warmer and facing increasing aridity.

“It is worrisome in the sense that even such a small change can have devastating effects on the environment.”

In order to avert these problems, Prof Mukwada said a special climate adaptation plan for the region was necessary. The university plays a key role in this, as it can provide guidance on the process of redefining knowledge, scientific understanding and truth, in order to promote sound mountain development interventions and programmes. “We need to shift towards research-based solutions.”

Prof Mukwada is a C2 NRF-rated researcher with expertise in the application of remote sensing and geographic information systems (GIS) in integrated scientific and multidisciplinary environmental research.

News Archive

State-of-the-art physics equipment and investment in students result in academic success
2017-09-26

Description: State-of-the-art physics equipment 1 Tags: State-of-the-art physics equipment 1 

At the recent nanotechnology facility tour at the UFS,
were, from the left, Dr Mthuthuzeli Zamxaka, SAASTA;
Prof Hendrik Swart, Sarchi Chair in the Department of Physics;
and Xolani Makhoba, Department of Science and Technology.
Photo: Leonie Bolleurs

Nanoscience, which is revealing new properties of very small arrangements of atoms, called nanoparticles, is opening a new world of possibilities. The Department of Physics at the University of the Free State is undertaking fundamental research with potential commercial applications. Its equipment and expertise is giving solid state physics research the edge in South Africa.

The UFS team of researchers and students are passionate about studying planets and atoms, all under one roof. Recently, the department, in collaboration with the South African Agency for Science and Technology Advancement (SAASTA), hosted a nanotechnology facility tour to give the public, learners and the media the opportunity to familiarise themselves with the science of nanotechnology, its origins, potential applications and risks.

Successes of the department
According to Prof Hendrik Swart, Senior Professor in the Department of Physics, the increase in resources since 2008 is playing a big role in the success rate of its research outputs. The Sarchi Chair awarded to Prof Swart in 2012 (bringing with it funding for equipment and bursaries) also contributed to the successes in the department.

The UFS Directorate Research Development also availed funding that was used for bursaries. These bursaries made it possible for the department to appoint 10 post-doctoral fellows, not one of them originally from South Africa.

The investment in people and equipment resulted in researchers and students publishing some 80 articles in 2016. Their work was also cited more than 900 times by other researchers in that year.

Another highlight in terms of the department’s growth in the past 10 years is the new wing of the Physics Building. Physics at the UFS is the only place in sub-Saharan Africa where state-of-the art equipment is found under one roof.

Description: State-of-the-art physics equipment 2  Tags: State-of-the-art physics equipment 2  

Antonie Fourie, Junior Lecturer in the UFS Department of
Physics, explained to a group of delegates and
members of the media the workings of an electron beam
evaporation system.
Photo: Leonie Bolleurs

Application of research
The department is a unique research facility with equipment that includes the X-ray Photoelectron Spectrometer (for the study of atoms), the Scanning Auger Microscope, as well as the Ion Time-of-Flight Secondary Ion Mass Spectrometer (revealing the chemical bonds in a sample, and drawing maps of the positions of atoms).

One of the areas on which the department is focusing its research, is phosphors. Researchers are exploring light emitting diodes (LEDs) which use less energy, are brighter and provide a wider viewing field. They are also looking into LED displays (LCDs) which are used in flat screens – the phosphors create the different colours and backlighting.

The research on solar cells reveals that phosphors can increase their efficiency by increasing the range of light frequencies which can be converted into electricity. Glow-in-the-dark coatings absorb light in the day and emit it later so cells can charge at night. As glow-in-the-dark phosphors become cheaper and more effective, they can be used as a lighting substitute on the walls of houses, street numbers and stop signs.

Video production of the Department of Physics research and equipment

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept