Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 August 2022 | Story NONSINDISO QWABE | Photo Boitumelo Molefe
Prof Geofrey Mukwada
Prof Geofrey Mukwada from the Department of Geography on the Qwaqwa Campus delivered his inaugural lecture, which focused on elevation-dependent warming in the Drakensberg Mountain region.

South Africa is generally regarded as a thirsty country due to water scarcity nationally. Even a rise of 0,5 °C in climate temperatures could have devastating effects on the environment.

Delivering his inaugural lecture on 22 August 2022 – a first for the Qwaqwa Campus in many years – Prof Geofrey Mukwada of the Department of Geography at the University of the Free State (UFS) Qwaqwa Campus painted a picture of the long-term effects of climate change on ecological, social, and economic aspects of the environment. The effects of climate change are being felt in all regions of the world, and the Drakensberg region in particular is beginning to bear the brunt.

Elevation-dependent warming a threat to socio-ecological systems

Introducing his topic, The last days of plenty: an assessment of elevation-dependent warming in the Drakensberg Mountain region between 1980 and 2018 and its potential implications for social-ecological systems in the region and downstream communities, Prof Mukwada said ‘last days’ was a euphemism used figuratively to imply the impending loss of environmental resources in the mountains because of climate change.

According to Prof Mukwada, elevation-dependent warming in the Drakensberg would pose serious implications for the overall rural livelihoods, regional trade, and biodiversity conservation.

“The Drakensberg Mountains is made up of a chain of several mountains and is home to a lot of activities. It is important for rural livelihood, including agriculture, cultivation of different forms, fisheries, and tourism, and if the climate is therefore changing and elevation-dependent warming is taking place, we see a threat to socio-ecological systems in many ways.”

In his lecture, Prof Mukwada discussed the three-decade-long investigation to determine if elevation-dependent warming is taking place at several points of the mountains, and to assess its environmental implications for the region and downstream communities. Using a time-series analysis standardised precipitation and evaporation index (SPEI) and monthly maximum temperature and locational and elevation data, the investigation monitored climate change trends between 1980 and 2018.

Development of research-based solutions

He said results did not confirm the existence of elevation-dependent warming in the Drakensberg Mountain region, but statistically significant evidence has shown that the region is becoming warmer and facing increasing aridity.

“It is worrisome in the sense that even such a small change can have devastating effects on the environment.”

In order to avert these problems, Prof Mukwada said a special climate adaptation plan for the region was necessary. The university plays a key role in this, as it can provide guidance on the process of redefining knowledge, scientific understanding and truth, in order to promote sound mountain development interventions and programmes. “We need to shift towards research-based solutions.”

Prof Mukwada is a C2 NRF-rated researcher with expertise in the application of remote sensing and geographic information systems (GIS) in integrated scientific and multidisciplinary environmental research.

News Archive

Is milk really so well-known, asks UFS’s Prof. Osthoff
2011-03-17

Prof. Garry Osthoff
Photo: Stephen Collett

Prof. Garry Osthoff opened a whole new world of milk to the audience in his inaugural lecture, Milk: the well-known (?) food, in our Department of Microbial, Biochemical and Food Biotechnology of the Faculty of Natural and Agricultural Sciences.

Prof. Osthoff has done his research in protein chemistry, immuno-chemistry and enzymology at the Council for Scientific and Industrial Research (CSIR) in Pretoria and post-doctoral research at the Bowman-Grey School of Medicine, North Carolina, USA. That was instrumental in establishing food chemistry at the university.
 
He is involved in chemical aspects of food, with a focus on dairy science and technology. He is also involved in the research of cheese processing as well as milk evolution and concentrated on milk evolution in his lecture. Knowledge of milk from dairy animals alone does not provide all the explanations of milk as food.
 
Some aspects he highlighted in his lecture were that milk is the first food to be utilised by young mammals and that it is custom-designed for each species. “However, mankind is an opportunist and has found ways of easy access to food by the practice of agriculture, where plants as well as animals were employed or rather exploited,” he said.
 
The cow is the best-known milk producer, but environmental conditions forced man to select other animals. In spite of breeding selection, cattle seem not to have adapted to the most extreme conditions such as high altitudes with sub-freezing temperatures, deserts and marshes.
 
Prof. Osthoff said the consumption of the milk as an adult is not natural; neither is the consumption of milk across species. This practice of mankind may often have consequences, when signs of malnutrition or diseases are noticed. Two common problems are an allergy to milk and lactose intolerance.
 
Allergies are normally the result of an immune response of the consumer to the foreign proteins found in the milk. In some cases it might help to switch from one milk source to another, such as switching from cow’s milk to goat’s milk.
 
Prof. Osthoff said lactose intolerance – the inability of adult humans to digest lactose, the milk sugar – is natural, as adults lose that ability to digest lactose. The symptoms of the condition are stomach cramps and diarrhoea. This problem is mainly found in the warmer climates of the world. This could be an indication of early passive development of dairy technology. In these regions milk could not be stored in its fresh form, but in a fermented form, in which case the lactose was pre-digested by micro-organisms, and the human population never adapted to digesting lactose in adulthood.
 
According to Prof. Osthoff, it is basically the lactose in milk that has spurred dairy technology. Its fermentation has resulted in the development of yoghurts and all the cheeses that we know. In turn, the intolerance to lactose has spurred a further technological solution: lactose-free milk is currently produced by pre-digestion of lactose with enzymes.
 
It was realised that the milks and products from different species differed in quality aspects such as keeping properties and taste. It was also realised that the nutritional properties differed as well as their effects on health. One example is the mentioned allergy against cow’s milk proteins, which may be solved by the consumption of goat’s milk. The nutritional benefits and technological processing of milk aroused an interest in more information, and it was realised that the information gained from human milk and that of the few domesticated species do not provide a complete explanation of the properties of milk as food. Of the 250 species of milk which have been studied, only the milk of humans and a few domesticated dairy animals has been studied in detail.

Media Release
15 March 2011
Issued by: Lacea Loader
Director: Strategic Communication
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: news@ufs.ac.za

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept