Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 August 2022 | Story NONSINDISO QWABE | Photo Boitumelo Molefe
Prof Geofrey Mukwada
Prof Geofrey Mukwada from the Department of Geography on the Qwaqwa Campus delivered his inaugural lecture, which focused on elevation-dependent warming in the Drakensberg Mountain region.

South Africa is generally regarded as a thirsty country due to water scarcity nationally. Even a rise of 0,5 °C in climate temperatures could have devastating effects on the environment.

Delivering his inaugural lecture on 22 August 2022 – a first for the Qwaqwa Campus in many years – Prof Geofrey Mukwada of the Department of Geography at the University of the Free State (UFS) Qwaqwa Campus painted a picture of the long-term effects of climate change on ecological, social, and economic aspects of the environment. The effects of climate change are being felt in all regions of the world, and the Drakensberg region in particular is beginning to bear the brunt.

Elevation-dependent warming a threat to socio-ecological systems

Introducing his topic, The last days of plenty: an assessment of elevation-dependent warming in the Drakensberg Mountain region between 1980 and 2018 and its potential implications for social-ecological systems in the region and downstream communities, Prof Mukwada said ‘last days’ was a euphemism used figuratively to imply the impending loss of environmental resources in the mountains because of climate change.

According to Prof Mukwada, elevation-dependent warming in the Drakensberg would pose serious implications for the overall rural livelihoods, regional trade, and biodiversity conservation.

“The Drakensberg Mountains is made up of a chain of several mountains and is home to a lot of activities. It is important for rural livelihood, including agriculture, cultivation of different forms, fisheries, and tourism, and if the climate is therefore changing and elevation-dependent warming is taking place, we see a threat to socio-ecological systems in many ways.”

In his lecture, Prof Mukwada discussed the three-decade-long investigation to determine if elevation-dependent warming is taking place at several points of the mountains, and to assess its environmental implications for the region and downstream communities. Using a time-series analysis standardised precipitation and evaporation index (SPEI) and monthly maximum temperature and locational and elevation data, the investigation monitored climate change trends between 1980 and 2018.

Development of research-based solutions

He said results did not confirm the existence of elevation-dependent warming in the Drakensberg Mountain region, but statistically significant evidence has shown that the region is becoming warmer and facing increasing aridity.

“It is worrisome in the sense that even such a small change can have devastating effects on the environment.”

In order to avert these problems, Prof Mukwada said a special climate adaptation plan for the region was necessary. The university plays a key role in this, as it can provide guidance on the process of redefining knowledge, scientific understanding and truth, in order to promote sound mountain development interventions and programmes. “We need to shift towards research-based solutions.”

Prof Mukwada is a C2 NRF-rated researcher with expertise in the application of remote sensing and geographic information systems (GIS) in integrated scientific and multidisciplinary environmental research.

News Archive

What do diamonds, chocolates, bugs and almost 30 Nobel Prizes have in common? Crystallography
2014-10-15

 

Some of the keynote speakers and chairpersons at the third world summit in the International Year of Crystallography (in Africa) were, from the left, front: Profs Abdelmalek Thalal (Morocco), Prosper Kanyankogote (University of Kinshasa, Democratic Republic of the Congo); Habib Bougzala (Tunisia), Santiago Garcia-Granda (IUCr, University Oviedo, Spain), Michele Zema (IYCr 2014, Italy/UK) and Dr Jean-Paul Ngome-Abiaga (UNESCO, Paris, France); back: Dr Thomas Auf der Heyde (Acting Director-general, South African Department of Science and Technology); Dr Petrie Steynberg (SASOL) and Prof André Roodt (UFS, host).

Photo: Marija Zbacnik
The third world summit in the International Year of Crystallography (in Africa) was hosted by Prof André Roodt, Head of the Department of Chemistry and President of the European Crystallographic Association,  at the University of the Free State in Bloemfontein.

A declaration with and appeal to support crystallography and science across Africa, was signed.

When one mentions 'Crystallography', or more simply 'crystals', what comes to mind? Diamonds? Perhaps jewellery in general? When thinking of crystals and Crystallography, you will need to think much bigger. And further – even to Mars and back.

Crystallography refers to the branch of science that is concerned with structure and properties of crystals. The obvious examples would include cut diamonds, gemstones such as amethysts, and ‘simple’ crystals such as selenite and quartz.

But have you thought about the irritating brown scales at the bottom of your kettle? The sand in your shoes? The salt over your lamb chops or the sugar in your coffee? All crystals. From egg shells to glucose, from bugs and insecticides to additives in food – even the compounds in chocolate – all fall under the close scrutiny of Crystallography.

The breakthroughs this field of science has produced have led to almost 30 Nobel Prizes over the years.

Determining the structure of DNA by crystallography was arguably one of the most significant scientific events of the 20th century. Different diseases have been cured or slowed by medicines obtained based on crystallographic studies. These include certain cancers, HIV/Aids, Tuberculosis and Malaria. Biological Crystallography enables the development of anti-viral drugs and vaccines.

This field of science influences our daily lives in virtually immeasurable ways. Here are but a few areas of study and development Crystallography contributes to:

•    LCD displays;
•    cellular smartphones;
•    insects and insecticides;
•    additives and products in foods;
•    improved effectiveness and security of credit cards;
•    new materials to preserve energy;
•    better gasoline with less by-products;
•    identify colour pigments used in paintings from the old masters, indicating if it’s an original or an imitation; and
•    beauty products such as nail polish, sun-block, mascara and eye shadow.

Crystallography is also currently used by the Curiosity Rover to analyse the substances and minerals on Mars.

Crystals and Crystallography form an integrated part of our daily lives – from bones and teeth to medicines and viruses, from chocolates to the blades in airplane turbines. Even down to the humble snowflake.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept