Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 August 2022 | Story NONSINDISO QWABE | Photo Boitumelo Molefe
Prof Geofrey Mukwada
Prof Geofrey Mukwada from the Department of Geography on the Qwaqwa Campus delivered his inaugural lecture, which focused on elevation-dependent warming in the Drakensberg Mountain region.

South Africa is generally regarded as a thirsty country due to water scarcity nationally. Even a rise of 0,5 °C in climate temperatures could have devastating effects on the environment.

Delivering his inaugural lecture on 22 August 2022 – a first for the Qwaqwa Campus in many years – Prof Geofrey Mukwada of the Department of Geography at the University of the Free State (UFS) Qwaqwa Campus painted a picture of the long-term effects of climate change on ecological, social, and economic aspects of the environment. The effects of climate change are being felt in all regions of the world, and the Drakensberg region in particular is beginning to bear the brunt.

Elevation-dependent warming a threat to socio-ecological systems

Introducing his topic, The last days of plenty: an assessment of elevation-dependent warming in the Drakensberg Mountain region between 1980 and 2018 and its potential implications for social-ecological systems in the region and downstream communities, Prof Mukwada said ‘last days’ was a euphemism used figuratively to imply the impending loss of environmental resources in the mountains because of climate change.

According to Prof Mukwada, elevation-dependent warming in the Drakensberg would pose serious implications for the overall rural livelihoods, regional trade, and biodiversity conservation.

“The Drakensberg Mountains is made up of a chain of several mountains and is home to a lot of activities. It is important for rural livelihood, including agriculture, cultivation of different forms, fisheries, and tourism, and if the climate is therefore changing and elevation-dependent warming is taking place, we see a threat to socio-ecological systems in many ways.”

In his lecture, Prof Mukwada discussed the three-decade-long investigation to determine if elevation-dependent warming is taking place at several points of the mountains, and to assess its environmental implications for the region and downstream communities. Using a time-series analysis standardised precipitation and evaporation index (SPEI) and monthly maximum temperature and locational and elevation data, the investigation monitored climate change trends between 1980 and 2018.

Development of research-based solutions

He said results did not confirm the existence of elevation-dependent warming in the Drakensberg Mountain region, but statistically significant evidence has shown that the region is becoming warmer and facing increasing aridity.

“It is worrisome in the sense that even such a small change can have devastating effects on the environment.”

In order to avert these problems, Prof Mukwada said a special climate adaptation plan for the region was necessary. The university plays a key role in this, as it can provide guidance on the process of redefining knowledge, scientific understanding and truth, in order to promote sound mountain development interventions and programmes. “We need to shift towards research-based solutions.”

Prof Mukwada is a C2 NRF-rated researcher with expertise in the application of remote sensing and geographic information systems (GIS) in integrated scientific and multidisciplinary environmental research.

News Archive

Fire as a management tool questionable in arid and semi-arid grassland areas
2015-03-24

Wild fire in the grassland
Photo: Supplied


The influence of fire on the ecosystem in the higher rainfall ‘‘sour’’ grassland areas of southern Africa has been well established. However, less information is available for arid and semi-arid ‘‘sweet’’ grassland areas, says Prof Hennie Snyman, Professor in the Department of Animal, Wildlife, and Grassland Sciences, about his research on the short-term impact of fire on the productivity of grasslands in semi-arid areas.

Sour and sweet grassland areas can be defined as receiving either higher or lower than approximately 600 mm of rainfall respectively. In quantifying the short-term impact of fire on the productivity of grasslands in semi-arid areas, a South African case study (experimental plot data) was investigated.

“Burned grassland can take at least two full growing seasons to recover in terms of above- and below-ground plant production and of water-use efficiency (WUE). The initial advantage in quality (crude protein) accompanying fire does not neutralise the reduction in half of the above-ground production and poor WUE occurring in the first season following the fire.

“The below-ground growth is more sensitive to burning than above-ground growth. Seasonal above-ground production loss to fire, which is a function of the amount and distribution of rainfall, can vary between 238 and 444 kg ha -1 for semi-arid grasslands. The importance of correct timing in the utilisation of burned semi-arid grassland, with respect to sustained high production, cannot be overemphasised,” said Prof Snyman.

In arid and semi-arid grassland areas, fire as a management tool is questionable if there is no specific purpose for it, as it can increase ecological and financial risk management in the short term.

Prof Snyman said: “More research is needed to quantify the impact of runaway fires on both productivity and soil properties, in terms of different seasonal climatic variations. The information to date may already serve as valuable guidelines regarding grassland productivity losses in semi-arid areas. These results can also provide a guideline in claims arising from unforeseen fires, in which thousands of rands can be involved, and which are often based on unscientific evidence.”

For more information or enquiries contact news@ufs.ac.za

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept