Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 August 2022 | Story Edzani Nephalela | Photo iStock
Several presenters presented their themes during the translanguaging virtual session. The seminar sought to improve participants' awareness of using more than one language in lecture rooms across the institution, particularly for tutoring and academics.

Language continues to be a barrier to access and success for many students at South African higher education institutions. Despite their status as official languages, indigenous languages have in the past and at present, structurally not been afforded the official space to function as academic and scientific languages.

Language policy for higher education seeks to address the challenge of the underdevelopment and underutilisation of official African languages at higher education institutions whilst simultaneously sustaining the standard and utilisation of languages that are already developed. 

The University of the Free State (UFS) Centre for Teaching and Learning hosted a multilingualism virtual seminar on 20 July 2022 that aimed to broaden an understanding of utilising more than one language within lecture rooms across the university, specifically for tutoring and academics. The following speakers presented various topics at the seminar:

Prof Makalela stated that the foundation of sustainable growth is excellent education, but the issue is, are we any closer to what one considers quality education? “You can’t, in my opinion. How can we know if you don’t examine epistemic difficulties at this level?” he further enlightened. 

Linguists believe that the practice of “translanguaging” can aid in learning, and the word has recently gained popularity in literature on bilingual and multilingual education with various universities incorporating these changes in their policies and to ensure that it’s all-inclusive as indicated by Dr Tolani Hlongwa. She further explained that languages are tools to navigate better understanding, whilst English should be used as a tool to communicate, not to measure intelligence.

What is the UFS’ role in addressing this?

The university’s language policy expresses its commitment to multilingualism, with particular emphasis on Sesotho, Afrikaans, and isiZulu. This policy ensures that language is not a barrier to equity of access, opportunity, and success in academic programmes or to access to the UFS administration. 

The UFS also developed an Academy for Multilingualism. This academy hosts the Multilingual Mokete, a popular annual tradition celebrating different cultural expressions in visual art, poetry, storytelling, drama, music, and songs by different language groups and in the different languages that are dominant at the UFS (i.e. English, Afrikaans, Sesotho, isiZulu, and Sign Language. 

In partnership with the University of Cape Town (UCT) and UKZN, the UFS will also conduct a Multilingualism Education Project colloquium on the new language policy framework for South African public higher education institutions on 28-29 September 2022. This language policy used in the new policy framework for public higher education institutions as well as its impacts will be examined in this virtual seminar. This is also an opportunity for diverse stakeholders to contribute suggestions on how to improve the existing status of language policy.

News Archive

UFS to host one of three world summits on crystallography
2014-04-15

 
Prof André Roodt from the Department of Chemistry at the University of the Free State (UFS), co-unveiled a special plaque in Poznan, Poland, as president of the European Crystallographic Association, with prof Gautam Desiraju, president of the IUCr (front right) and others to commemorate the Nobel prize winner Max von Laue. (Photo's: Milosz Ruszkowski, Grzegorz Dutkiewicz)

Prof André Roodt from the Department of Chemistry at the University of the Free State (UFS), co-unveiled a special plaque in Poznan, Poland, as president of the European Crystallographic Association, to commemorate the Nobel prize winner Max von Laue at a special Laue Symposium organised by prof Mariusz Jaskolski from the A. Mickiewicz University in Poznan.

Max von Laue, who spent his early childhood in Poznan, was the first scientist to diffract X-rays with a crystal.

2014 has been declared by the United Nations as the International Year of Crystallography, and it was recently officially opened at the UNESCO headquarters in Paris, France, by the Secretary-General of the UN, Ban Ki-moon. The International Year of Crystallography celebrates the centennial of the work of Max von Laue and the father and son, William Henry and William Laurence Bragg.

As part of the celebrations, Prof Roodt, president of the European Crystallographic Association, one of the three regional affiliates (Americas, Europe and Africa; Asia and Australasia) of the International Union of Crystallography (IUCr), was invited by the president of the IUCr, Prof Gautam Desiraju, to host one of the three world summits, wherein crystallography is to showcase its achievements and strategise for the future.

The summit and conference will take place on the Bloemfontein Campus of the UFS from 12 to 17 October 2014 and is titled: 'Crystallography as vehicle to promote science in Africa and beyond.' It is an ambitious meeting wherein it is anticipated to bring the French-, English- and Arab-speaking nations of Africa together to strategise how science can be expanded, and to offer possibilities for this as nestled in crystallography. Young and established scientists, and politicians associated with science and science management, are the target audience to be brought together in Bloemfontein.

Dr Thomas Auf der Heyde, acting Director General of the South African Department of Science and Technology (DST), has committed some R500 000 for this effort, while the International Union of Crystallography provided R170 000.

“Crystals and crystallography form an integrated part of our daily lives, form bones and teeth, to medicines and viruses, new catalysts, jewellery, colour pigments, chocolates, electronics, batteries, metal blades in airplane turbines, panels for solar energy and many more. In spite of this, unfortunately, not many people know much about X-ray crystallography, although it is probably one of the greatest innovations of the twentieth century. Determining the structure of the DNA was one of the most significant scientific events of the 20th century. It has helped understand how genetic messages are being passed on between cells inside our body – everything from the way instructions are sent to proteins to fight infections, to how life is reproduced.

“At the UFS, crystallography finds application in Chemistry, Physics, Biology, Mathematics, Geology, Engineering and the Medical fields. Crystallography is used by the Curiosity Rover, analysing the substances and minerals on Mars!

“The UFS’s Departments of Chemistry and Physics, in particular, have advanced instruments and important research thrusts wherein X-ray crystallography has formed a central part for more than 40 years.

“Crystallography has produced some 28 Nobel prize winners over the past 100 years and continues to provide the means for fundamental and applied research,” said Prof Roodt.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept