Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 December 2022 | Story Jóhann Thormählen | Photo Supplied
Kopano Melesi
Kopano Melesi has been involved with teams such as the USSA U21, South African U20 and U23 sides, and works at the Mahd Sports Academy in Saudi Arabia.

They were ambitious students, in the same study group, and graduated together at the UFS. Only a few years later, three friends from the class of 2015 are in charge of the strength and conditioning of three top sports teams in South Africa.

The former classmates Bongani Tim Qumbu (Springboks), Kopano Melesi (Bafana Bafana), and Tumi Masekela (Proteas men’s cricket) are making sure the best in the country is in shape to compete internationally.

And the trio are not the only sport scientists from their class to excel. Others like Obakeng Molopyane, who did Wayde van Niekerk’s conditioning, are also part of this special group. It all started while doing their honours in Human Movement Science and being mentored by some of the best in the business, like Prof Derik Coetzee, who was the conditioning coach when the Boks won the 2007 World Cup.

Melesi says Prof Coetzee played a big role in their development as they had a good road map to follow. “He exposed us to things in the professional world that a normal student could only dream of. We worked with national teams, domestic and international professional teams.”

“When we went out there, we were not unsure about our abilities and capabilities to execute.” According to Masekela, they were keen students and had great UFS lecturers.

“We would meet up most afternoons after lectures to break down the lesson that we had until we understood exactly what the lesson was about.”

“This included digging into the history of how certain theories came about, then debating on our own thoughts on the topic,” he says.

All three gained experience while still studying. Qumbu worked with the Kovsie Young Guns and Irawas, Melesi with the Kovsie soccer team, and Masekela with the UFS cricket team.

Melesi says early exposure, through ‘volunteering’ at local teams, is key if you want to reach the top.

“I would advise aspiring students to engage with their lecturers as much as possible in class, as they have a lot of practical knowledge about sport science that you will not read in a book,” says Masekela.

 

 


 

Kopano Melesi Tumi Masekela Bongani Tim Qumbu

Kopano Melesi has been involved with teams such as the USSA U21, South African U20 and U23 sides, and works at the Mahd Sports Academy in Saudi Arabia.

 

Tumi Masekela played cricket for the University of the Free State, Northerns, the Knights and Titans. He is now the strength and conditioning coach of the Proteas.

 

Bongani Tim Qumbu (left) worked his way to the top. He now looks after some of the best rugby players in SA like the Springbok captain Siya Kolisi. Here they are at a Bok training session.

Photo: Supplied Photo: Cricket South Africa Photo: Supplied

 

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept