Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 December 2022 | Story Jóhann Thormählen | Photo Supplied
Kopano Melesi
Kopano Melesi has been involved with teams such as the USSA U21, South African U20 and U23 sides, and works at the Mahd Sports Academy in Saudi Arabia.

They were ambitious students, in the same study group, and graduated together at the UFS. Only a few years later, three friends from the class of 2015 are in charge of the strength and conditioning of three top sports teams in South Africa.

The former classmates Bongani Tim Qumbu (Springboks), Kopano Melesi (Bafana Bafana), and Tumi Masekela (Proteas men’s cricket) are making sure the best in the country is in shape to compete internationally.

And the trio are not the only sport scientists from their class to excel. Others like Obakeng Molopyane, who did Wayde van Niekerk’s conditioning, are also part of this special group. It all started while doing their honours in Human Movement Science and being mentored by some of the best in the business, like Prof Derik Coetzee, who was the conditioning coach when the Boks won the 2007 World Cup.

Melesi says Prof Coetzee played a big role in their development as they had a good road map to follow. “He exposed us to things in the professional world that a normal student could only dream of. We worked with national teams, domestic and international professional teams.”

“When we went out there, we were not unsure about our abilities and capabilities to execute.” According to Masekela, they were keen students and had great UFS lecturers.

“We would meet up most afternoons after lectures to break down the lesson that we had until we understood exactly what the lesson was about.”

“This included digging into the history of how certain theories came about, then debating on our own thoughts on the topic,” he says.

All three gained experience while still studying. Qumbu worked with the Kovsie Young Guns and Irawas, Melesi with the Kovsie soccer team, and Masekela with the UFS cricket team.

Melesi says early exposure, through ‘volunteering’ at local teams, is key if you want to reach the top.

“I would advise aspiring students to engage with their lecturers as much as possible in class, as they have a lot of practical knowledge about sport science that you will not read in a book,” says Masekela.

 

 


 

Kopano Melesi Tumi Masekela Bongani Tim Qumbu

Kopano Melesi has been involved with teams such as the USSA U21, South African U20 and U23 sides, and works at the Mahd Sports Academy in Saudi Arabia.

 

Tumi Masekela played cricket for the University of the Free State, Northerns, the Knights and Titans. He is now the strength and conditioning coach of the Proteas.

 

Bongani Tim Qumbu (left) worked his way to the top. He now looks after some of the best rugby players in SA like the Springbok captain Siya Kolisi. Here they are at a Bok training session.

Photo: Supplied Photo: Cricket South Africa Photo: Supplied

 

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept