Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
23 December 2022 | Story Jóhann Thormählen | Photo Supplied
Kopano Melesi
Kopano Melesi has been involved with teams such as the USSA U21, South African U20 and U23 sides, and works at the Mahd Sports Academy in Saudi Arabia.

They were ambitious students, in the same study group, and graduated together at the UFS. Only a few years later, three friends from the class of 2015 are in charge of the strength and conditioning of three top sports teams in South Africa.

The former classmates Bongani Tim Qumbu (Springboks), Kopano Melesi (Bafana Bafana), and Tumi Masekela (Proteas men’s cricket) are making sure the best in the country is in shape to compete internationally.

And the trio are not the only sport scientists from their class to excel. Others like Obakeng Molopyane, who did Wayde van Niekerk’s conditioning, are also part of this special group. It all started while doing their honours in Human Movement Science and being mentored by some of the best in the business, like Prof Derik Coetzee, who was the conditioning coach when the Boks won the 2007 World Cup.

Melesi says Prof Coetzee played a big role in their development as they had a good road map to follow. “He exposed us to things in the professional world that a normal student could only dream of. We worked with national teams, domestic and international professional teams.”

“When we went out there, we were not unsure about our abilities and capabilities to execute.” According to Masekela, they were keen students and had great UFS lecturers.

“We would meet up most afternoons after lectures to break down the lesson that we had until we understood exactly what the lesson was about.”

“This included digging into the history of how certain theories came about, then debating on our own thoughts on the topic,” he says.

All three gained experience while still studying. Qumbu worked with the Kovsie Young Guns and Irawas, Melesi with the Kovsie soccer team, and Masekela with the UFS cricket team.

Melesi says early exposure, through ‘volunteering’ at local teams, is key if you want to reach the top.

“I would advise aspiring students to engage with their lecturers as much as possible in class, as they have a lot of practical knowledge about sport science that you will not read in a book,” says Masekela.

 

 


 

Kopano Melesi Tumi Masekela Bongani Tim Qumbu

Kopano Melesi has been involved with teams such as the USSA U21, South African U20 and U23 sides, and works at the Mahd Sports Academy in Saudi Arabia.

 

Tumi Masekela played cricket for the University of the Free State, Northerns, the Knights and Titans. He is now the strength and conditioning coach of the Proteas.

 

Bongani Tim Qumbu (left) worked his way to the top. He now looks after some of the best rugby players in SA like the Springbok captain Siya Kolisi. Here they are at a Bok training session.

Photo: Supplied Photo: Cricket South Africa Photo: Supplied

 

News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept