Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 December 2022 | Story André Damons | Photo André Damons
Dr Michael Pienaar, Senior Lecturer and specialist in the UFS Department of Paediatrics and Child Health being presented to the acting Chancellor by his supervisor Prof Stephen Brown.

A lecturer from the University of the Free State (UFS) says the need to improve the care of seriously ill children is a vital part of reducing preventable deaths and diseases, and this led him to investigate the use of artificial neural networks to develop models for the prediction of patient outcomes in children with severe illness. The study was done for his PhD thesis. 

This forms the basis for the PhD thesis of Dr Michael Pienaar, Senior Lecturer and specialist in the UFS Department of Paediatrics and Child Health, called, The Development and Validation of Predictive Models for Paediatric Critical Illness in Children in Central South Africa using Artificial Neural Networks. His thesis reports the development and testing of several machine learning models designed to help healthcare workers identify seriously ill children early in a range of resource-limited settings. Combining a systematic literature search and Delphi technique with clinical data from 1 032 participants, this research led to significant progress towards implementable models for community health workers in clinical practice.

Care for critically ill children is a mission and calling 

Dr Pienaar graduated with a PhD specialising in Paediatrics on Monday (12 December) during the Faculty of Health Sciences’ December graduation ceremony. It took him three years to complete this degree. His supervisor was Prof Stephen Brown, Principal Specialist and Head of the Division of Paediatric Cardiology in the Department of Paediatrics and Child Health in the Faculty of Health Sciences at the UFS. Prof Nicolaas Luwes and Dr EC George were his co-supervisors. 

“I have been working in paediatric critical care since 2019 and see the care of critically ill children as my mission and calling in life. At the outset of the project, I was interested in approaches to complex phenomena and wanted to investigate new methods for tackling these in healthcare. 

“I have been interested in technology since childhood and in collaborating with other disciplines since I joined the university in 2019. Machine learning seemed like a great fit that could incorporate these interests and yield meaningful clinical results,” explains Dr Pienaar the reason why he chose this topic for his thesis.

He hopes that, in time, this work will lead to the implementation of integrated machine learning models to improve care and clinical outcomes for children in South Africa. From a scholarship perspective, he continues, his hope is that this work draws interest to this field in clinical research and encourages a move towards incorporating these new methods, as well as skills in areas such as coding and design in the armamentarium of a new generation of clinicians.

Medicine chooses you

According to Dr Pienaar, he always had broad interests, of which medicine is one. “I am very grateful to have found my way in medicine and am humbled and privileged to be allowed to walk with children and their families on a difficult and important journey. I believe this profession will choose you and put you where you are needed if you give it time and are prepared to listen.”

He describes graduating as a complicated ending to this period of his life and the beginning of a next chapter. He was humbled by the graduation ceremony. 

“It was wonderful to graduate with undergraduates and postgraduates in my profession – I felt great pride and solidarity joining these new colleagues and specialists in taking the oath. I am certainly relieved, proud, excited, and happy. I am also very grateful to the university, my promotors, colleagues, friends, and family for supporting me through this process. I must confess, it is also slightly bittersweet, I loved working on this and do miss it, but look forward to the next exciting project. 

“I would like to thank my Head of Department, Dr (Nomakhuwa) Tabane, my supervisors, my family and friends once again. I would also like to acknowledge and thank the National Research Foundation (NRF) as well as the University of the Free State for their assistance with funding this research.”

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept