Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 December 2022 | Story André Damons | Photo André Damons
Dr Michael Pienaar, Senior Lecturer and specialist in the UFS Department of Paediatrics and Child Health being presented to the acting Chancellor by his supervisor Prof Stephen Brown.

A lecturer from the University of the Free State (UFS) says the need to improve the care of seriously ill children is a vital part of reducing preventable deaths and diseases, and this led him to investigate the use of artificial neural networks to develop models for the prediction of patient outcomes in children with severe illness. The study was done for his PhD thesis. 

This forms the basis for the PhD thesis of Dr Michael Pienaar, Senior Lecturer and specialist in the UFS Department of Paediatrics and Child Health, called, The Development and Validation of Predictive Models for Paediatric Critical Illness in Children in Central South Africa using Artificial Neural Networks. His thesis reports the development and testing of several machine learning models designed to help healthcare workers identify seriously ill children early in a range of resource-limited settings. Combining a systematic literature search and Delphi technique with clinical data from 1 032 participants, this research led to significant progress towards implementable models for community health workers in clinical practice.

Care for critically ill children is a mission and calling 

Dr Pienaar graduated with a PhD specialising in Paediatrics on Monday (12 December) during the Faculty of Health Sciences’ December graduation ceremony. It took him three years to complete this degree. His supervisor was Prof Stephen Brown, Principal Specialist and Head of the Division of Paediatric Cardiology in the Department of Paediatrics and Child Health in the Faculty of Health Sciences at the UFS. Prof Nicolaas Luwes and Dr EC George were his co-supervisors. 

“I have been working in paediatric critical care since 2019 and see the care of critically ill children as my mission and calling in life. At the outset of the project, I was interested in approaches to complex phenomena and wanted to investigate new methods for tackling these in healthcare. 

“I have been interested in technology since childhood and in collaborating with other disciplines since I joined the university in 2019. Machine learning seemed like a great fit that could incorporate these interests and yield meaningful clinical results,” explains Dr Pienaar the reason why he chose this topic for his thesis.

He hopes that, in time, this work will lead to the implementation of integrated machine learning models to improve care and clinical outcomes for children in South Africa. From a scholarship perspective, he continues, his hope is that this work draws interest to this field in clinical research and encourages a move towards incorporating these new methods, as well as skills in areas such as coding and design in the armamentarium of a new generation of clinicians.

Medicine chooses you

According to Dr Pienaar, he always had broad interests, of which medicine is one. “I am very grateful to have found my way in medicine and am humbled and privileged to be allowed to walk with children and their families on a difficult and important journey. I believe this profession will choose you and put you where you are needed if you give it time and are prepared to listen.”

He describes graduating as a complicated ending to this period of his life and the beginning of a next chapter. He was humbled by the graduation ceremony. 

“It was wonderful to graduate with undergraduates and postgraduates in my profession – I felt great pride and solidarity joining these new colleagues and specialists in taking the oath. I am certainly relieved, proud, excited, and happy. I am also very grateful to the university, my promotors, colleagues, friends, and family for supporting me through this process. I must confess, it is also slightly bittersweet, I loved working on this and do miss it, but look forward to the next exciting project. 

“I would like to thank my Head of Department, Dr (Nomakhuwa) Tabane, my supervisors, my family and friends once again. I would also like to acknowledge and thank the National Research Foundation (NRF) as well as the University of the Free State for their assistance with funding this research.”

News Archive

UFS’s Vishuis best residence rugby team in the country
2010-03-30

 
Steinhoff Vishuis, the Steinhoff Koshuis Rugby Champions for 2010.
Photo: Varsity Cup
 
Beyers Louw (with ball), left wing from Vishuis, is taken down in the finals of the Steinhoff Koshuis League agaisnt Dagbreek from Stellenbosch. Left are team mates Gerhard Meyer (No 8) and on the right is captain Jos de Klerk (flanker).
Photo: Varsity Cup

 
Boom Prinsloo from Shimlas.
Photo: Varsity Cup

 

On Monday, 29 March 2010, the University of the Free State’s (UFS) residence team in the Steinhoff Koshuis League, Steinhoff Vishuis, showed that they were the best university residence team in the country when they were crowned as the Steinhoff Koshuis Rugby Champions. Steinhoff Vishuis triumphed with 22-7 over the University of Stellenbosch’s Dagbreek. This match took place on the Danie Craven Stadium in Stellenbosch.

The hero of the match was left wing Beyers Louw, who scored two of his team's tries and kicked two conversions as well as a penalty. That left him with 97 points, the player who scored the most points in the tournament.

Shimlas’s Boom Prinsloo was also named player of the Varsity Cup. In three of Shimlas’s eight matches he was named player of the match. With the seven tries that Boom scored during the tournament, he and Lola Waka from the University of Johannesburg (UJ) were also jointly named as the top scorers in the tournament.

This is the second consecutive year that a Kovsie team wins the residence competition of the Varsity Cup. Last year Armentum carried the crown as the best residence rugby team in the country.

Well done. The UFS is proud of you!

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept