Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
14 December 2022 | Story André Damons | Photo André Damons
Dr Michael Pienaar, Senior Lecturer and specialist in the UFS Department of Paediatrics and Child Health being presented to the acting Chancellor by his supervisor Prof Stephen Brown.

A lecturer from the University of the Free State (UFS) says the need to improve the care of seriously ill children is a vital part of reducing preventable deaths and diseases, and this led him to investigate the use of artificial neural networks to develop models for the prediction of patient outcomes in children with severe illness. The study was done for his PhD thesis. 

This forms the basis for the PhD thesis of Dr Michael Pienaar, Senior Lecturer and specialist in the UFS Department of Paediatrics and Child Health, called, The Development and Validation of Predictive Models for Paediatric Critical Illness in Children in Central South Africa using Artificial Neural Networks. His thesis reports the development and testing of several machine learning models designed to help healthcare workers identify seriously ill children early in a range of resource-limited settings. Combining a systematic literature search and Delphi technique with clinical data from 1 032 participants, this research led to significant progress towards implementable models for community health workers in clinical practice.

Care for critically ill children is a mission and calling 

Dr Pienaar graduated with a PhD specialising in Paediatrics on Monday (12 December) during the Faculty of Health Sciences’ December graduation ceremony. It took him three years to complete this degree. His supervisor was Prof Stephen Brown, Principal Specialist and Head of the Division of Paediatric Cardiology in the Department of Paediatrics and Child Health in the Faculty of Health Sciences at the UFS. Prof Nicolaas Luwes and Dr EC George were his co-supervisors. 

“I have been working in paediatric critical care since 2019 and see the care of critically ill children as my mission and calling in life. At the outset of the project, I was interested in approaches to complex phenomena and wanted to investigate new methods for tackling these in healthcare. 

“I have been interested in technology since childhood and in collaborating with other disciplines since I joined the university in 2019. Machine learning seemed like a great fit that could incorporate these interests and yield meaningful clinical results,” explains Dr Pienaar the reason why he chose this topic for his thesis.

He hopes that, in time, this work will lead to the implementation of integrated machine learning models to improve care and clinical outcomes for children in South Africa. From a scholarship perspective, he continues, his hope is that this work draws interest to this field in clinical research and encourages a move towards incorporating these new methods, as well as skills in areas such as coding and design in the armamentarium of a new generation of clinicians.

Medicine chooses you

According to Dr Pienaar, he always had broad interests, of which medicine is one. “I am very grateful to have found my way in medicine and am humbled and privileged to be allowed to walk with children and their families on a difficult and important journey. I believe this profession will choose you and put you where you are needed if you give it time and are prepared to listen.”

He describes graduating as a complicated ending to this period of his life and the beginning of a next chapter. He was humbled by the graduation ceremony. 

“It was wonderful to graduate with undergraduates and postgraduates in my profession – I felt great pride and solidarity joining these new colleagues and specialists in taking the oath. I am certainly relieved, proud, excited, and happy. I am also very grateful to the university, my promotors, colleagues, friends, and family for supporting me through this process. I must confess, it is also slightly bittersweet, I loved working on this and do miss it, but look forward to the next exciting project. 

“I would like to thank my Head of Department, Dr (Nomakhuwa) Tabane, my supervisors, my family and friends once again. I would also like to acknowledge and thank the National Research Foundation (NRF) as well as the University of the Free State for their assistance with funding this research.”

News Archive

Consumer Science at the UFS awards three PhDs
2015-07-08

Dr Gloria Seiphetlheng, Dr Natasha Cronje, Dr Ismari van der Merwe and Prof Hester Steyn.
Photo: Leonie Bolleurs

For the first time in its history, the Department of Consumer Science in the Faculty of Natural and Agricultural Sciences at the University of the Free State (UFS) earned three doctorates at one graduation ceremony this year. This week three PhDs were awarded to Ismari van der Merwe, Natasha Cronje, and Gloria Seiphetlheng at the Winter Graduation that took place on the Bloemfontein Campus.

Electrochemically-activated water is widely used in the food and other industries, due to its excellent environment-friendly properties. However, it is not used in the textile industry yet, because too little research has been done to determine the possible positive and negative impact it may have on textiles.

With the thesis, The evaluation of catholyte treatment on the colour and tensile properties of dyed cotton, polyester and polyamide 6,6 fabrics,  Dr Cronje, a lecturer in the UFS’s Department of Consumer Science, and Dr Seiphetlheng from the Serowe College of Education in Botswana,  provided major new information with the thesis, Anolyte as an alternative bleach for cotton fabrics. This information is essential when considering the application of catholytes and anolytes in the textile industry.

Electrochemically-activated water divides water in catholytes and anolytes. The anolyte part is used as a disinfectant and bleach. It is not really suitable for domestic use, as it can cause colour loss in coloured textile products. However, it can be used in the hospitality industry where white sheets, towels, etc., are used and washed on a regular basis.

The catholyte part of the water has properties similar to washing powder. It can also be used in the textile industry as washing liquid.

According to Prof Hester Steyn, Head of the Department of Consumer Science and supervisor of all three PhD candidates, this electrochemically-activated water is also very eco-friendly. “It has a short shelf life. If the electrochemically-activated water isn’t utilised, it returns to normal water that wouldn’t harm the environment. No water is therefore lost, and no waste products are released that would contaminate the environment,” she says.

Dr Van der Merwe’s research focused on Degumming Gonometa postica cocoons using environmentally conscious methods. A lecturer in the Department of Consumer Science, she demonstrated that simple and environmentally-friendly methods can be used with great success to procure wild silk from the cocoons of the Gonometa postica worms living in the camel thorn trees found in the Northern Cape and Namibia.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept