Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 December 2022 | Story Leonie Bolleurs | Photo Francois van Vuuren
At the opening of the Science Education Centre on the Bloemfontein Campus, were, from the left: Prof Loyisa Jita, Prof Francis Petersen, Dr Cobus van Breda, and the Honourable Dr Tate Makgoe.

“Music is liquid architecture; architecture is frozen music.” – Johann Wolfgang von Goethe.

These were the words used by Marius Coetzee of the Odeion School of Music when he introduced a colleague from the same department, Prof Anmari van der Westhuizen, before she performed a cello solo (GYÖRGY LIGETI mov1) during the opening of the Science Education Centre (Sci-Ed) on the Bloemfontein Campus of the University of the Free State (UFS).

“A worthy piece of music to celebrate a signature building,” Coetzee stated. 

The building accommodates the only science education centre in central South Africa, with its mission the advancement of innovative and effective mathematics and science teaching and learning, which is beneficial to student teachers, in-service teachers, learners, parents, and the public at large. 

During the opening of the event, the Rector and Vice-Chancellor of the UFS, Prof Francis Petersen, said universities are about interactive spaces such as the Science Education Centre. He believes it is in spaces such as these where innovations and initiatives are created to tackle science (and the world) of the future.

“We must seek more of these spaces at the UFS. We must ensure that graduates from our university have a solid discipline – that they have their basis right – to prepare them to interact and engage in a multidisciplinary fashion, because that is what the world outside requires." 

Speaking about the role of universities in society, Prof Petersen said the purpose of a university is to engage with society. “If we can’t show the public the value of what we have here, the public will ask what the value of universities is. Why do universities exist in the first place? Our role is always to look at things that we do best: our intellectual ability to understand how things work; us challenging specific things and infusing that into society. It is for this reason that we have public lectures, science centres, and other platforms, allowing society to engage with us.”

“Universities are places that evolve continuously, and this centre is an excellent example.”

Referring to the UFS’ twelve-year strategic plan, Vision 130, he said besides visibility, the university will also focus on impact. “We can only show our impact through our graduates, the knowledge that we generate, the research that we conduct, and engaging with society. This centre is all about that.”

The Honourable Dr Tate Makgoe, the MEC for Basic Education in the Free State, shared the sentiment that the impact of universities must be felt by the community. “I am inspired to know that this facility is open to the public. Government will be the main beneficiary of this science centre and we will use it profitably. Among others, I will send our Foundation Phase teachers here,” he stated. 

New UFS Science Education Centre building

The UFS officially opened the only Science Education Centre (Sci-Ed) in central South Africa on its Bloemfontein Campus.  (Photo: Francois van Vuuren.)

An aesthetic and educational added value

Dr Cobus van Breda, Manager of Sci-Ed and Programme Director of the Science-for-the-Future, an initiative hosted by the UFS Faculty of Education to address the challenge of mathematics and science teaching and learning in South Africa, said that the project had 289 884 participants between 2009 and 2022. 

He explained that this project implements mathematics and science teachers’ professional development and outreach programmes across the country.

“In order to extend its impact, it was decided to establish a Science Education Centre to not only enhance its teaching and learning programmes to student educators and in-service teachers, but also to provide a platform to include science communication and engagement with the public. Sci-Ed will be open to the public, and through outreach programmes as well as formal and non-formal visits to the centre, the community can make use of the benefits of the centre,” says Dr Van Breda.

He sees the promotion of parental and family involvement in children’s learning as a priority for Sci-Ed. “Programmes and events aimed at empowering parents and guardians to support their children will also be presented,” said Dr Van Breda.

The Science Education Centre’s main objective, he says, is to create a STEAM+ (Science, Technology, Engineering, Art, Mathematics, and related areas) environment in the South African context, where innovative and 21st century science education (Grade R to Grade 12) can thrive. “The intent of Sci-Ed is to expose, inspire, and empower users while engaging in STEAM experiences and interactive exhibits,” he added. 

Merging the old with the new

Dr Van Breda – the passion, drive, and dedication behind Sci-Ed – believes that teaching philosophy and facilities must complement each other. This resulted in the construction of the science centre, a realisation of a dream that started in 2005. 

The centre was built in three stages. Phase one of the development involved the construction of the building. An outdoor park area was created during phase two, and interactive exhibits, programmes, and events were planned, developed, and enhanced during phase three to serve the purpose of the facility. “The last part will continue for about six more months, as we want to develop authentic exhibitions that support the university’s teaching and learning philosophy,” said Dr Van Breda.

The Sci-Ed Building, designed to accommodate all the crucial elements of a modern science education centre, is an extension of the existing Winkie Direko Building. Dr Van Breda explained that the architect designed the new building to seamlessly merge with the Winkie Direko Building, which dates from an earlier era. “A conscious decision was made to use some cladding from the old building where it merges into the new facility. This architectural feature can also be seen as a metaphor for building a bright new future on sound foundations,” he said. 

With its interactive exhibits, Sci-Ed will make it possible for the numbers of students, student educators, in-service educators, learners, parents, other interest groups and the public who will enter its doors, to engage in a hands-on manner with activities, and as such experience a science principle. “Using interactive exhibits, we also hope to evoke questions that will stimulate discussion and enhance learning, especially coincidental learning,” said Dr Van Breda.

He added that Sci-Ed will also serve as a social space on campus, where all students can interact within a fun and exciting popular science environment.

Prof Loyiso Jita, Dean of the Faculty of Education, described the building as a dream come true. It is not just about the building, it is also about creating an intellectual space, both indoors and outdoors, to encourage students, staff, and the community to interact with science.

Science Education Centre (Sci-Ed)_

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept