Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
08 December 2022 | Story Leonie Bolleurs | Photo Francois van Vuuren
At the opening of the Science Education Centre on the Bloemfontein Campus, were, from the left: Prof Loyisa Jita, Prof Francis Petersen, Dr Cobus van Breda, and the Honourable Dr Tate Makgoe.

“Music is liquid architecture; architecture is frozen music.” – Johann Wolfgang von Goethe.

These were the words used by Marius Coetzee of the Odeion School of Music when he introduced a colleague from the same department, Prof Anmari van der Westhuizen, before she performed a cello solo (GYÖRGY LIGETI mov1) during the opening of the Science Education Centre (Sci-Ed) on the Bloemfontein Campus of the University of the Free State (UFS).

“A worthy piece of music to celebrate a signature building,” Coetzee stated. 

The building accommodates the only science education centre in central South Africa, with its mission the advancement of innovative and effective mathematics and science teaching and learning, which is beneficial to student teachers, in-service teachers, learners, parents, and the public at large. 

During the opening of the event, the Rector and Vice-Chancellor of the UFS, Prof Francis Petersen, said universities are about interactive spaces such as the Science Education Centre. He believes it is in spaces such as these where innovations and initiatives are created to tackle science (and the world) of the future.

“We must seek more of these spaces at the UFS. We must ensure that graduates from our university have a solid discipline – that they have their basis right – to prepare them to interact and engage in a multidisciplinary fashion, because that is what the world outside requires." 

Speaking about the role of universities in society, Prof Petersen said the purpose of a university is to engage with society. “If we can’t show the public the value of what we have here, the public will ask what the value of universities is. Why do universities exist in the first place? Our role is always to look at things that we do best: our intellectual ability to understand how things work; us challenging specific things and infusing that into society. It is for this reason that we have public lectures, science centres, and other platforms, allowing society to engage with us.”

“Universities are places that evolve continuously, and this centre is an excellent example.”

Referring to the UFS’ twelve-year strategic plan, Vision 130, he said besides visibility, the university will also focus on impact. “We can only show our impact through our graduates, the knowledge that we generate, the research that we conduct, and engaging with society. This centre is all about that.”

The Honourable Dr Tate Makgoe, the MEC for Basic Education in the Free State, shared the sentiment that the impact of universities must be felt by the community. “I am inspired to know that this facility is open to the public. Government will be the main beneficiary of this science centre and we will use it profitably. Among others, I will send our Foundation Phase teachers here,” he stated. 

New UFS Science Education Centre building

The UFS officially opened the only Science Education Centre (Sci-Ed) in central South Africa on its Bloemfontein Campus.  (Photo: Francois van Vuuren.)

An aesthetic and educational added value

Dr Cobus van Breda, Manager of Sci-Ed and Programme Director of the Science-for-the-Future, an initiative hosted by the UFS Faculty of Education to address the challenge of mathematics and science teaching and learning in South Africa, said that the project had 289 884 participants between 2009 and 2022. 

He explained that this project implements mathematics and science teachers’ professional development and outreach programmes across the country.

“In order to extend its impact, it was decided to establish a Science Education Centre to not only enhance its teaching and learning programmes to student educators and in-service teachers, but also to provide a platform to include science communication and engagement with the public. Sci-Ed will be open to the public, and through outreach programmes as well as formal and non-formal visits to the centre, the community can make use of the benefits of the centre,” says Dr Van Breda.

He sees the promotion of parental and family involvement in children’s learning as a priority for Sci-Ed. “Programmes and events aimed at empowering parents and guardians to support their children will also be presented,” said Dr Van Breda.

The Science Education Centre’s main objective, he says, is to create a STEAM+ (Science, Technology, Engineering, Art, Mathematics, and related areas) environment in the South African context, where innovative and 21st century science education (Grade R to Grade 12) can thrive. “The intent of Sci-Ed is to expose, inspire, and empower users while engaging in STEAM experiences and interactive exhibits,” he added. 

Merging the old with the new

Dr Van Breda – the passion, drive, and dedication behind Sci-Ed – believes that teaching philosophy and facilities must complement each other. This resulted in the construction of the science centre, a realisation of a dream that started in 2005. 

The centre was built in three stages. Phase one of the development involved the construction of the building. An outdoor park area was created during phase two, and interactive exhibits, programmes, and events were planned, developed, and enhanced during phase three to serve the purpose of the facility. “The last part will continue for about six more months, as we want to develop authentic exhibitions that support the university’s teaching and learning philosophy,” said Dr Van Breda.

The Sci-Ed Building, designed to accommodate all the crucial elements of a modern science education centre, is an extension of the existing Winkie Direko Building. Dr Van Breda explained that the architect designed the new building to seamlessly merge with the Winkie Direko Building, which dates from an earlier era. “A conscious decision was made to use some cladding from the old building where it merges into the new facility. This architectural feature can also be seen as a metaphor for building a bright new future on sound foundations,” he said. 

With its interactive exhibits, Sci-Ed will make it possible for the numbers of students, student educators, in-service educators, learners, parents, other interest groups and the public who will enter its doors, to engage in a hands-on manner with activities, and as such experience a science principle. “Using interactive exhibits, we also hope to evoke questions that will stimulate discussion and enhance learning, especially coincidental learning,” said Dr Van Breda.

He added that Sci-Ed will also serve as a social space on campus, where all students can interact within a fun and exciting popular science environment.

Prof Loyiso Jita, Dean of the Faculty of Education, described the building as a dream come true. It is not just about the building, it is also about creating an intellectual space, both indoors and outdoors, to encourage students, staff, and the community to interact with science.

Science Education Centre (Sci-Ed)_

News Archive

Research helps farmers save with irrigation
2017-02-15

Description: Irrigation research Tags: Irrigation research

Marcill Venter, lecturer in the Department of
Agricultural Economics at the University of the
Free State, has developed the mathematical
programming system, Soil Water Irrigation
Planning and Energy Management in order to
determine irrigation pump hours.
Photo: Rulanzen Martin

Her advice to farmers is that they should make sure they are aware of the total cost (investment and operating costs) of an irrigation system. In most cases the investment cost is low, but the operating cost over the lifetime of the system is high.

“It is very important to have a look at the total cost and to install the most economic system,” says Marcill Venter, lecturer at the University of the Free State (UFS), who has done research on the economic sustainability of water-pipe systems.

Irrigation systems important components for farming
This research comes at a time when many farmers are relying on their irrigation systems due to persistent drought and low rainfall during 2016. South Africa has also experienced an abnormal increase in electricity tariffs in recent years. Due to tariff increases which threaten the future profitability of irrigation producers, the Water Research Commission (WRC) has launched and financed a project on the sustainable management of irrigation farming systems. “I had the opportunity to work on the project as a researcher,” says Venter.

The heart of every irrigation system is the water pipes that bring life to crops and livestock, and this is what Venter’s research is about. “Water pipes are part of the whole design of irrigation systems. The design of the system impact certain factors which determine the investment and operating costs,” she says.

Mathematical system to help farmers
Venter and Professor Bennie Grové, also from the Department of Agricultural Economics at the UFS, designed the Soil Water Irrigation Planning and Energy Management (SWIP-E) programming model as part of the WRC’s project, as well as for her master’s degree. “The model determines irrigation pump hours through a daily groundwater budget, while also taking into account the time-of-use electricity tariff structure and change in kilowatt requirements arising from the main-line design,” says Venter. The model is a non-linear programming model programmed in General Algebraic Modeling System (GAMS).

Design of irrigation system important for sustainability

The main outcome of the study is that the time-of-use electricity tariff structure (Ruraflex) is always more profitable than the flat-rate structure (Landrate). The interaction between the management and design of a system is crucial, as it determines the investment and operating costs. Irrigation designers should take the investment and operating cost of a system into account during the design process. The standards set by the South African Irrigation Institute (SAII) should also be controlled and revised.

Water-pipe thickness plays major role in cost cuts
There is interaction between water-pipe thickness, investment and operating costs. When thinner water pipes are installed, it increases the friction in the system as well as the kilowatt usage. A high kilowatt increases the operating cost, but the use of thinner water pipes lowers the investment cost. Thicker water pipes therefore lower the friction and the kilowatt requirements, which leads to lower operating costs, but thicker pipes have a higher investment cost. “It is thus crucial to look at the total cost (operating and investment cost) when investing in a new system. Farmers should invest in the system with the lowest total cost,” says Venter.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept