Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 December 2022 | Story Jóhann Thormählen | Photo Anja Aucamp
Peter Makgato
Peter Makgato showed true perseverance in coming back after being out of action for more than a year with an Achilles tendon injury. The Kovsie long jumper won a bronze medal at the South African Championships in 2022.

If it wasn’t for Peter Makgato’s UFS support system, he would have been lost to South African athletics. The road of recovery after a serious injury can be lonesome, but he was never alone.

The promising long jumper had to learn to walk again after the injury to his Achilles tendon and could only compete more than a year after his dreams were shattered in November 2020.

Only months after returning to jumping in 2022, he was winning medals again.

Keeping me focused

“Without KovsieSport, I believe I would have hung up my spikes after that injury,” says Makgato. “Throughout the entire journey back, I had support from my coach (Emmarie Prinsloo; Head of KovsieSport Jumping Academy) and Oom DB (Prinsloo; Head of Athletics at KovsieSport).”

He also praises “the expert medical help” from Kovsie Health and says he went through nothing alone. “My progress was monitored by a team that knew me before the injury and this meant they were able to keep me focused on the progress and not on the injury.”

Although he had injuries before, Makgato says the emotional challenges were much bigger. “What really helped me were a few words from Wayde van Niekerk days after my operation when I went back to the track on crutches. He told me not to lose my head.

“That is the best advice you can give someone in my position. Physically I was broken, I had to make sure that mentally I fought to stay above the waters.”

Bigger goals in mind

He was only able to walk again from May 2021, started rehab in August 2021, and was running properly by December 2021.

He was only able to jump competitively again in March 2022, and a month later claimed a bronze medal at the South African Championships (7,47 m). This was followed by a USSA bronze in May 2022 (7,46 m).

“I had bigger goals in mind. Now that I look back, I realise that for a person who could not even run properly five months before and who had little preparation time, I was doing pretty good.”

And now the Master of Laws student has his sights on bigger things again: The World Athletics Championships next year and the Olympic Games in 2024.

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept