Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
22 December 2022 | Story Jóhann Thormählen | Photo Anja Aucamp
Peter Makgato
Peter Makgato showed true perseverance in coming back after being out of action for more than a year with an Achilles tendon injury. The Kovsie long jumper won a bronze medal at the South African Championships in 2022.

If it wasn’t for Peter Makgato’s UFS support system, he would have been lost to South African athletics. The road of recovery after a serious injury can be lonesome, but he was never alone.

The promising long jumper had to learn to walk again after the injury to his Achilles tendon and could only compete more than a year after his dreams were shattered in November 2020.

Only months after returning to jumping in 2022, he was winning medals again.

Keeping me focused

“Without KovsieSport, I believe I would have hung up my spikes after that injury,” says Makgato. “Throughout the entire journey back, I had support from my coach (Emmarie Prinsloo; Head of KovsieSport Jumping Academy) and Oom DB (Prinsloo; Head of Athletics at KovsieSport).”

He also praises “the expert medical help” from Kovsie Health and says he went through nothing alone. “My progress was monitored by a team that knew me before the injury and this meant they were able to keep me focused on the progress and not on the injury.”

Although he had injuries before, Makgato says the emotional challenges were much bigger. “What really helped me were a few words from Wayde van Niekerk days after my operation when I went back to the track on crutches. He told me not to lose my head.

“That is the best advice you can give someone in my position. Physically I was broken, I had to make sure that mentally I fought to stay above the waters.”

Bigger goals in mind

He was only able to walk again from May 2021, started rehab in August 2021, and was running properly by December 2021.

He was only able to jump competitively again in March 2022, and a month later claimed a bronze medal at the South African Championships (7,47 m). This was followed by a USSA bronze in May 2022 (7,46 m).

“I had bigger goals in mind. Now that I look back, I realise that for a person who could not even run properly five months before and who had little preparation time, I was doing pretty good.”

And now the Master of Laws student has his sights on bigger things again: The World Athletics Championships next year and the Olympic Games in 2024.

News Archive

Discovery in Scorpius constellation may signify clean energy for Earth
2017-01-23

 Description: Discovery in Scorpius constellation may signify clean energy for Earth Tags: Discovery in Scorpius constellation may signify clean energy for Earth

Earlier this year, a group of international astronomers
announced the discovery of an exotic binary star system,
AR Scorpii. The system is in the Scorpius constellation.
Photos: Supplied

See article on Nature’s website 

In future, stargazers and astronomers will look at the Scorpius constellation near the Milky Way with new eyes. Earlier this year, a group of international astronomers announced the discovery of an exotic binary star system, AR Scorpii. The system is in the Scorpius constellation.

Prof Pieter Meintjes, researcher in the Department of Physics at the University of the Free State (UFS), worked with four colleagues on what he describes as a “wonderful discovery”. This sensational discovery, which could lead to the production of cleaner energy on Earth, will be published in the research journal, Nature, early in 2017.

Model developed to interpret new set of measurements
The exotic binary star which was discovered consists of a red dwarf and a white dwarf revolving around each other every 3,5 hours. The binary system showed very prominent pulsations of 117 and 118 seconds respectively. The pulsations can be explained by a bundle radiation produced by the white dwarf star.

“These new observations have shown that the radiation is strongly polarised, a sign that we are dealing with synchrotron radiation here. Synchrotron radiation is produced by electrons accelerated to extremely high energy levels in the magnetic field of the white dwarf star,” says Prof Meintjes.

He developed a theoretical model to interpret a new set of measurements that was taken by the 1,9 m telescope and the 10 m SALT telescope at the South African Astronomical Observatory (SAA0).

Totally unique phenomenon could contribute to energy production on Earth
“I further indicated that the interaction between the magnetic fields of the white dwarf star and the red dwarf star induces secondary processes that specifically describe the behaviour of the radiation in the radio band and infrared band accurately. AR Sco is the first white-red dwarf binary system of which all the pulsated radiation could be explained by the synchrotron process, which is totally unique,” says Prof Meintjes.

According to Prof Meintjes, the value of the model lies in the fact that the processes which produce the radiation in AR Sco, can also be applied to produce energy on Earth.

 

Plasma reactors are based on roughly the same processes which apply in AR Sco, and with refining, it could be utilised to generate electricity in future. This will be much cleaner than nuclear energy.

 

The model developed by Prof Meintjes explains all the radiation in the system – from radio waves to X-rays – in terms of electrons accelerated to extremely high energy levels by electric fields in the system, which then produce synchrotron radiation over a very wide band of the electromagnetic spectrum.

Prof Meintjes is currently working on a follow-up article examining the evolution of the AR Sco, in other words, the origin of such a unique system and the final state towards which it is evolving. “My vision for the immediate future is therefore to develop a model for the evolution of the source concerned,” he says.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept