Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
12 December 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Dr Karen Venter
Dr Venter received her PhD at the December graduation ceremonies. She focused on addressing societal challenges through the practice of engaged scholarship in community-university research partnerships for the common good.

When asked what inspired her to pursue a PhD, Dr Karen Venter, Head of the Division of Service Learning in the Directorate Community Engagement at the University of the Free State (UFS), said she wanted to make a difference in addressing societal challenges through the practice of engaged scholarship in community-university research partnerships for the common good. 

“Also, I love to learn and share knowledge – and that is exactly what I did in this PhD, titled: An integrated service-learning praxis approach for flourishment of professional development in community-higher education partnerships.” 

She explains, “My five-articles-style thesis explored the contribution of an integrated service-learning praxis approach towards the flourishment of engaged scholarship in community-higher education partnerships. The approach combined community engaged service-learning (CESL), appreciative inquiry and appreciative leadership, to advance the praxis of engaged scholarship. The study was demarcated in the field of higher education, applied in the discipline of nursing education, and contextually bound to three interrelated action research cycles and settings – for international, national, and local level engagement.”

Community members participate in the research journey

“The intent of the study was to recognise the community-led action learning of community member participants at the core action learning set,” says Dr Venter. 

The study followed a participatory action learning and action research methodology. During her research journey, she was joined by members of the community, specifically from Bloemshelter – a shelter for the homeless. “They co-constructed and completed a four-year community-led action learning pathway to holistic development (spiritual, personal, professional), which brought about holistic social change and well-being in their livelihood, moving from dependence on others to establishing viable multiple micro-enterprises,” she says.

The UFS affiliated with GULL to reward the community member participants’ action learning. “Already in 2019, GULL certified their action learning with a Professional Bachelor’s degree, while I still had to document the action research, and only now received the PhD,” says Dr Venter. 

“I am grateful to all the participants who co-created action-oriented knowledge with me in the study, from international, to national, to local level of engagement.”

Integrating a PhD with work and life

A PhD requires a lot of hard work and effort, to the point that the lines between studies, work, and life become blurred. Dr Venter acknowledged that she tried to balance work/life and study, but “I was not very good at it”. 
Passion, patience, peace, perseverance, positivity, and prayer are good principles to maintain when you are in the process of completing a PhD. – Dr Karen Venter 

She elaborates, “Studying became an integrated part of my work and life.  For the duration of my studies, I started working at 03:00 and I also did not watch any television.” She did, however, make time for herself by joining the wellness workout programme presented by the UFS, enjoyed gardening, and playing with her grandchildren. “I also tried to rest one day over weekends, and made time to praise and worship, which energised me for the next week,” she adds. 

“Passion, patience, peace, perseverance, positivity, and prayer are good principles to maintain when you are in the process of completing a PhD, she believes. 

Dr Venter says that although writing a PhD is indeed lonely, it is also an exciting journey, “especially when you reach those moments of breakthrough that can only come to life after deep reflection.” She also describes it as a deep spiritual journey. “Almost like walking in and out of a labyrinth – and where many hours become equal to a breath.

She is very grateful to her supervisors, Dr Somarie Holtzhausen, Prof Mabel Erasmus, and Dr Elanie Myburgh. “I deeply honour and salute you for your unconditional and continuous coaching, compassion, and care – guiding, supporting, motivating, mentoring, and keeping me grounded until I completed the journey.”

 

 


News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept