Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 December 2022 | Story André Damons | Photo Sonia Small
Dr Nicholas Pearce
Prof Nicholas Pearce has joined the Faculty of Health Sciences’ management team after being appointed Head of the School of Clinical Medicine. Prof Pearce is the former Head of the Department of Surgery at the UFS and led the Universitas Hospital’s COVID-19 Task Team.

During the height of the COVID-19 pandemic, Prof Nicholas Pearce led the COVID-19 Task Team of the Universitas Academic Hospital, ensuring that the hospital not only had enough Personal protective equipment (PPEs) and beds for patients, but also that the vaccination process ran smoothly. Now, the Best Doctor of the Year for 2022 – as named during this year’s National Annual Batho Pele Excellence Awards (NBPEA) – will lead the School of Clinical Medicine in the Faculty of Health Sciences at the University of the Free State (UFS).

Prof Pearce, former Head of the Department of Surgery at the UFS who served the faculty in multiple capacities over a long period, took up this position on 1 December 2022 – a position he is looking forward to.  

Create world-class doctors, maximise students’ full potential

“I’m excited about taking up my new position as Head of the School of Clinical Medicine. This is a role that comes with huge responsibility, and my vision is to create world-class doctors and to maximise each student’s full potential.  We, as university, are a national asset and need to grow and develop to be of service to the future of our country.  So, to lead a school with such a prestigious history is truly a privilege,” says Prof Pearce. 

According to him, the goal for the Medical School in the next five years should be determined by three main core drivers: service delivery, research, and teaching and training. He would like to be in a stronger position, with innovation that can produce world-class doctors (both undergraduate and postgraduate). 

If you look at the strategic plan of the UFS, says Prof Pearce, it is clear that, under the leadership of current Rector and Vice-Chancellor, Prof Francis Petersen, a period of regeneration and innovation is upon the university. Tied to this concept is the idea of self-evaluation and improvement. The idea of challenges and coming up with solutions excites him.  

“I think for a while, my main aim will be to bring the university, the provincial Department of Health, and the school in alignment, ensuring that we are all pulling in the same direction to achieve the same goal.”  

“At the end of the day, the goal here is to provide quality health care to the people of South Africa, while the Department of Health, the university, and society each function in different environments – coming together and understanding each other’s needs and having a common goal – excellent health care in this country for all our citizens.”

Lessons learned from surgery and running COVID-19 task teams

Prof Pearce, who was awarded the UFS Chancellor’s Medal for outstanding service during the April graduation ceremonies, says lessons learned from being both a surgeon and running COVID-19 task teams, are that strategic organisational processes need to be in place – systems strengthened, the policies and procedures adapted, and comprehensive planning taking place. 

However, he says, one must also bear in mind that we have a history of very high academic standards in the School of Clinical Medicine, so you want to improve on that rather than go backwards.

“I learned a lot from surgery and COVID-19 that will equip me in future. COVID-19 taught me about organisational management, disaster management, funding, resource management, people management skills, development, etc.  
“Running the Department of Surgery, one of the largest departments in the faculty with multiple inputs and personalities, has taught me that you are only as strong as the team behind you. I have an amazing team behind me in this new role, whether it is the dean, vice-dean, heads of department, administration, rectorate, and so forth.” 

He will continue to work at the Universitas Hospital; however, being fully employed by the university, he will only be doing some calls and working over weekends.  

“As a surgeon, theatre has always been my safe haven, my place of meditation, my place of peace, and I am sad to say goodbye to surgery and the Department of Surgery – it has been loyal, and I am grateful to everyone in the department; but I think as with all good things, there is a time to come and a time to go.”

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept