Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
06 December 2022 | Story André Damons | Photo Sonia Small
Dr Nicholas Pearce
Prof Nicholas Pearce has joined the Faculty of Health Sciences’ management team after being appointed Head of the School of Clinical Medicine. Prof Pearce is the former Head of the Department of Surgery at the UFS and led the Universitas Hospital’s COVID-19 Task Team.

During the height of the COVID-19 pandemic, Prof Nicholas Pearce led the COVID-19 Task Team of the Universitas Academic Hospital, ensuring that the hospital not only had enough Personal protective equipment (PPEs) and beds for patients, but also that the vaccination process ran smoothly. Now, the Best Doctor of the Year for 2022 – as named during this year’s National Annual Batho Pele Excellence Awards (NBPEA) – will lead the School of Clinical Medicine in the Faculty of Health Sciences at the University of the Free State (UFS).

Prof Pearce, former Head of the Department of Surgery at the UFS who served the faculty in multiple capacities over a long period, took up this position on 1 December 2022 – a position he is looking forward to.  

Create world-class doctors, maximise students’ full potential

“I’m excited about taking up my new position as Head of the School of Clinical Medicine. This is a role that comes with huge responsibility, and my vision is to create world-class doctors and to maximise each student’s full potential.  We, as university, are a national asset and need to grow and develop to be of service to the future of our country.  So, to lead a school with such a prestigious history is truly a privilege,” says Prof Pearce. 

According to him, the goal for the Medical School in the next five years should be determined by three main core drivers: service delivery, research, and teaching and training. He would like to be in a stronger position, with innovation that can produce world-class doctors (both undergraduate and postgraduate). 

If you look at the strategic plan of the UFS, says Prof Pearce, it is clear that, under the leadership of current Rector and Vice-Chancellor, Prof Francis Petersen, a period of regeneration and innovation is upon the university. Tied to this concept is the idea of self-evaluation and improvement. The idea of challenges and coming up with solutions excites him.  

“I think for a while, my main aim will be to bring the university, the provincial Department of Health, and the school in alignment, ensuring that we are all pulling in the same direction to achieve the same goal.”  

“At the end of the day, the goal here is to provide quality health care to the people of South Africa, while the Department of Health, the university, and society each function in different environments – coming together and understanding each other’s needs and having a common goal – excellent health care in this country for all our citizens.”

Lessons learned from surgery and running COVID-19 task teams

Prof Pearce, who was awarded the UFS Chancellor’s Medal for outstanding service during the April graduation ceremonies, says lessons learned from being both a surgeon and running COVID-19 task teams, are that strategic organisational processes need to be in place – systems strengthened, the policies and procedures adapted, and comprehensive planning taking place. 

However, he says, one must also bear in mind that we have a history of very high academic standards in the School of Clinical Medicine, so you want to improve on that rather than go backwards.

“I learned a lot from surgery and COVID-19 that will equip me in future. COVID-19 taught me about organisational management, disaster management, funding, resource management, people management skills, development, etc.  
“Running the Department of Surgery, one of the largest departments in the faculty with multiple inputs and personalities, has taught me that you are only as strong as the team behind you. I have an amazing team behind me in this new role, whether it is the dean, vice-dean, heads of department, administration, rectorate, and so forth.” 

He will continue to work at the Universitas Hospital; however, being fully employed by the university, he will only be doing some calls and working over weekends.  

“As a surgeon, theatre has always been my safe haven, my place of meditation, my place of peace, and I am sad to say goodbye to surgery and the Department of Surgery – it has been loyal, and I am grateful to everyone in the department; but I think as with all good things, there is a time to come and a time to go.”

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept