Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 December 2022 | Story Rulanzen Martin | Photo Barend Nagel
From the left: Rulanzen Martin, Lacea Loader, Dr Nitha Ramnath, and Martie Nortjé.

Another year, another round of national and international awards for the Department of Communication and Marketing’s (DCM) campaigns and projects. This year saw DCM pick up an International Association of Business Communicators (IABC) Africa Silver Quill Award of Excellence for Communication Research for Narrative Building Storytelling. This project and subsequent award were in partnership with Development Communication Solutions (DevCom), led by Lacea Loader, Director: Communication and Marketing. 

During the 2022 annual Marketing, Advancement and Communication in Education (MACE) Excellence Awards, DCM won four excellence awards. Dr Nitha Ramnath, Deputy Director: Corporate Relations, won a Silver Award of Excellence for the 2021 Rector’s Concert, and a Bronze Award of Excellence for the 2022 Rector’s Concert. 

Lacea Loader and Martie Nortjé, Manager: Reputation, Brand and Marketing Management, won a Bronze Award of Excellence for the project ‘UFS – Our Story: The building and implementation of a brand narrative.’ Rounding up the UFS’ winning tally was Website Editor, Rulanzen Martin, who won a MACE Bronze Award of Excellence for the 2021 UFS Deaf Awareness Month (DAM) Campaign. The DAM campaign also received recognition during the 2021 IABC Silver Quill awards, where it won a Silver Quill Award of Excellence. 

Awards a perfect opportunity to benchmark 

“The awards give recognition to the communication efforts and endeavours undertaken by DCM as the strategic communication partner at the UFS; it also serves as a perfect opportunity to benchmark against peers and the industry. I am extremely proud of what the team has achieved,” says Loader.  “It is an honour when our projects receive awards, given the calibre of entries submitted for both the IABC and MACE awards programmes. The IABC awards programme is for all industries, while the MACE awards only recognise higher education institutions,” she says. 

For the 2022 MACE Excellence Awards, a total of 95 awards were awarded to 12 institutions from a total of 171 entries.

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept