Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 December 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Dr Thomas Sekyi-Ampah
Dr Thomas Sekyi-Ampah, who recently received his PhD in Urban and Regional Planning at the UFS December graduation ceremonies.

“I am extremely glad that I was successful in obtaining my PhD degree. Learning is a lifelong experience, and the joy of this undertaking is immense. I will encourage others to pursue this goal later in their lives if they so desire,” said Dr Thomas Eric Sekyi-Ampah, who received his PhD degree in the Department of Urban and Regional Planning at the University of the Free State (UFS) – just more than two weeks before his 74th birthday. 

He completed his master’s degree at the UFS and decided to also pursue a PhD at the same institution, focusing on the tension between traditional leaders and the municipal planning process around the Spatial Planning and Land Use Management Act 2013 (SPLUMA), the role traditional leaders play in nature conservation, and the limitations of municipal spatial governance due to inadequate resources. In his thesis, titled: Towards a sustainable and transformative spatial governance system for municipalities with traditional leaders: A case study of Alfred Nzo District Municipality, Eastern Cape, Dr Sekyi-Ampah investigates the potential for inclusive and sustainable spatial governance in this municipal district.

His supervisor since 2018, Prof Verna Nel, Professor in the Department of Urban and Regional Planning, said the process required tenacity and hard work. “I admire his persistence.”

Impacting service delivery

Dr Sekyi-Ampah describes the Alfred Nzo District as “a deeply rural area, characterised by subsistence agriculture, where longstanding traditions and customs prevail”.

“The legacy of the 1913 Land Act and subsequent apartheid policies are evident in the pervasive poverty and high dependence on social grants,” he added. 

“For me, it was appropriate to explore the nature of the existing spatial governance and development challenges of towns and the traditional authority areas within this municipal district, as well as the relationships between the municipalities and the traditional authorities,” he said.

He continued: “Very large areas of traditional lands are located in environmentally sensitive zones. Thus, planning that takes cognisance of the environment should be paramount.”

After interviewing municipal officials, traditional leaders, local businesses, and planners with knowledge about the region, he found that although the traditional leaders have antagonistic feelings towards the implementation of SPLUMA, there is sufficient goodwill for cooperation with the local governments in the district. While the necessary plans and policies are in place, the main obstacles are the constraints experienced by the municipalities – staff, finances, and an unstable political environment.

He also found that implementing the Spatial Development Framework (SDF) in the traditional areas is a challenge, since municipalities do not control land allocation. “Planners are excluded from land allocation; thus, there is no adherence to the provisions of the SDF. This impacts service delivery, disaster management, and the judicious use of the environment in the traditional areas,” he said.

Improving sustainability of the area

Dr Sekyi-Ampah believes that he can add value through his research. It can improve the sustainability of the area if these constraints are addressed, and if traditional leaders are included in the planning and land use management processes. Ultimately, this can alleviate the plight of residents.

“I recommend the Department of Urban and Regional Planning to any prospective student, because it has a team of academics and support staff that will guarantee success for prospective students who are prepared to put in the requisite effort,” said Dr Sekyi-Ampah.

He is looking forward to continuing his research and to mentor prospective students based on the experience and wealth of knowledge obtained from this research and his experience as a town and regional planner.

News Archive

Champagne and cancer have more in common than you might think
2013-05-08

 

Photo: Supplied
08 May 2013

No, a glass of champagne will not cure cancer....

…But they have more in common than you might think.

Researchers from the Departments of Microbial Biochemical and Food Biotechnology, Physics and the Centre for Microscopy at the University of the Free State in South Africa were recently exploring the properties of yeast cells in wine and food to find out more of how yeast was able to manufacture the gas that caused bread to rise, champagne to fizz and traditional beer to foam. And the discovery they made is a breakthrough that may have enormous implications for the treatment of diseases in humans.

The team discovered that they could slice open cells with argon gas particles, and look inside. They were surprised to find a maze of tiny passages like gas chambers that allowed each cell to ‘breathe.’ It is this tiny set of ‘lungs’ that puts the bubbles in your bubbly and the bounce in your bread.

But it was the technique that the researchers used to open up the cells that caught the attention of the scientists at the Mayo Clinic (Tumor Angiogenesis and Vascular Biology Research Centre) in the US.

Using this technology, they ultimately aim to peer inside cells taken from a cancer patient to see how treatment was progressing. In this way they would be able to assist the Mayo team to target treatments more effectively, reduce dosages in order to make treatment gentler on the patient, and have an accurate view of how the cancer was being eliminated.

“Yes, we are working with the Mayo Clinic,” said Profes Lodewyk Kock from the Microbial, Biochemical and Food Biotechnology Department at the UFS.

“This technique we developed has enormous potential for cell research, whether it is for cancer treatment or any other investigation into the working of cells. Through nanotechnology, and our own invention called Auger-architectomics, we are able to see where no-one has been able to see before.”

The team of Prof Kock including Dr Chantel Swart, Kumisho Dithebe, Prof Hendrik Swart (Physics, UFS) and Prof Pieter van Wyk (Centre for Microscopy, UFS) unlocked the ‘missing link’ that explains the existence of bubbles inside yeasts, and incidentally have created a possible technique for tracking drug and chemotherapy treatment in human cells.

Their work has been published recently in FEMS Yeast Research, the leading international journal on yeast research. In addition, their discovery has been selected for display on the cover page of all 2013 issues of this journal.

One can most certainly raise a glass of champagne to celebrate that!

There are links for video lectures on the technique used and findings on the Internet at:

1. http://vimeo.com/63643628 (Comic version for school kids)

2. http://vimeo.com/61521401 (Detailed version for fellow scientists)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept