Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 December 2022 | Story Leonie Bolleurs | Photo Leonie Bolleurs
Dr Thomas Sekyi-Ampah
Dr Thomas Sekyi-Ampah, who recently received his PhD in Urban and Regional Planning at the UFS December graduation ceremonies.

“I am extremely glad that I was successful in obtaining my PhD degree. Learning is a lifelong experience, and the joy of this undertaking is immense. I will encourage others to pursue this goal later in their lives if they so desire,” said Dr Thomas Eric Sekyi-Ampah, who received his PhD degree in the Department of Urban and Regional Planning at the University of the Free State (UFS) – just more than two weeks before his 74th birthday. 

He completed his master’s degree at the UFS and decided to also pursue a PhD at the same institution, focusing on the tension between traditional leaders and the municipal planning process around the Spatial Planning and Land Use Management Act 2013 (SPLUMA), the role traditional leaders play in nature conservation, and the limitations of municipal spatial governance due to inadequate resources. In his thesis, titled: Towards a sustainable and transformative spatial governance system for municipalities with traditional leaders: A case study of Alfred Nzo District Municipality, Eastern Cape, Dr Sekyi-Ampah investigates the potential for inclusive and sustainable spatial governance in this municipal district.

His supervisor since 2018, Prof Verna Nel, Professor in the Department of Urban and Regional Planning, said the process required tenacity and hard work. “I admire his persistence.”

Impacting service delivery

Dr Sekyi-Ampah describes the Alfred Nzo District as “a deeply rural area, characterised by subsistence agriculture, where longstanding traditions and customs prevail”.

“The legacy of the 1913 Land Act and subsequent apartheid policies are evident in the pervasive poverty and high dependence on social grants,” he added. 

“For me, it was appropriate to explore the nature of the existing spatial governance and development challenges of towns and the traditional authority areas within this municipal district, as well as the relationships between the municipalities and the traditional authorities,” he said.

He continued: “Very large areas of traditional lands are located in environmentally sensitive zones. Thus, planning that takes cognisance of the environment should be paramount.”

After interviewing municipal officials, traditional leaders, local businesses, and planners with knowledge about the region, he found that although the traditional leaders have antagonistic feelings towards the implementation of SPLUMA, there is sufficient goodwill for cooperation with the local governments in the district. While the necessary plans and policies are in place, the main obstacles are the constraints experienced by the municipalities – staff, finances, and an unstable political environment.

He also found that implementing the Spatial Development Framework (SDF) in the traditional areas is a challenge, since municipalities do not control land allocation. “Planners are excluded from land allocation; thus, there is no adherence to the provisions of the SDF. This impacts service delivery, disaster management, and the judicious use of the environment in the traditional areas,” he said.

Improving sustainability of the area

Dr Sekyi-Ampah believes that he can add value through his research. It can improve the sustainability of the area if these constraints are addressed, and if traditional leaders are included in the planning and land use management processes. Ultimately, this can alleviate the plight of residents.

“I recommend the Department of Urban and Regional Planning to any prospective student, because it has a team of academics and support staff that will guarantee success for prospective students who are prepared to put in the requisite effort,” said Dr Sekyi-Ampah.

He is looking forward to continuing his research and to mentor prospective students based on the experience and wealth of knowledge obtained from this research and his experience as a town and regional planner.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept