Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
09 February 2022 | Story Lacea Loader

The University of the Free State UFS) is aware of media reports on 8 and 9 February 2022 about challenges that students are facing related to off-campus accommodation and in particular an incident that took place on the Bloemfontein Campus in the early hours of 8 February 2022 when a group of students arrived late evening at Protection Services and requested emergency accommodation.

It is untrue that the university did not provide emergency accommodation to the group of students, and we wish to confirm that accommodation was indeed offered in two on-campus residences. However, the offer to provide such accommodation was not taken up by the Bloemfontein Campus Student Representative Council (CSRC) on behalf of the group. During Tuesday morning, university staff managed to obtain accommodation for the group in an off-campus emergency accommodation facility, to which they were taken by shuttle.

Several measures are in place to ensure the successful management of the accommodation process in consultation with and in agreement with various stakeholders. When the need arises, the university arranges emergency off-campus accommodation for students on all three campuses. Where a student cannot afford to pay for emergency accommodation, the university has measures in place, which include the provision of daily transport in the form of a shuttle service to the emergency accommodation and back to the campus – specifically during the registration period.

In addition, an Emergency Accommodation Committee, on which the CSRC sits, meets weekly. The CSRC is part of the committee’s decisions to accommodate the needs of students related to emergency accommodation.

News Archive

UFS researcher engineers metal surfaces
2015-03-03

Shaun Cronjé, a PhD student, in a surface characterisation laboratory at the UFS.

It is well known that the surface of a component is much more vulnerable to damage than the interior, and that surface-originated degradation such as wear, corrosion, and fracture will eventually destroy the component.

“Engineering the surface, based on scientific knowledge, is essential to control these damaging processes. It also creates electronic and geometric structures on the surface which opens up a world of new devices, especially considering the properties on the nano-length scale,” said Prof Wiets Roos from the Department of Physics at the University of the Free State (UFS).

At elevated temperatures, atoms are more mobile and can migrate to grain boundaries and surfaces, which have a major influence on material properties. The redistribution of solute atoms between the surface and the bulk of the material is known as segregation. Knowing the behaviour of segregation at the surface/environment interface can be very useful in the development of new materials. As an example materials can be improved higher efficiency and lower fuel consumption, thus reducing environmental pollution.

The main aims of Prof Roos’s research are to understand surface segregation, use it as a tool, and contribute to the various surface engineering fields.

The surface characterisation laboratories at the UFS are well equipped to do high temperature segregation measurements, and have already proven a success, not only in the ability to prepare the specimens for characterisation, but also in developing models and procedures to quantify the segregation parameters.

The most recent results have demonstrated the importance of taking evaporation into account during quantification.” This has laid the foundation for future studies by installing the necessary hardware in a surface characterisation spectrometer, establishing experimental protocols, and improving an existing model (developed in this laboratory) for simulating segregation profiles,” said Prof Roos.

Segregation parameters allow the researcher to predict and utilise the surface concentration behaviour as a function of temperature and time. “This not only contributes to fields involving corrosion, oxidation, sintering, wear, chemical poisoning, powder metallurgy, and lubrication but adds to the development of self-healing devices,” said Prof Roos.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept