Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 February 2022 | Story Anthony Mthembu | Photo Victor Ramphore Mahlohla (baddapictures)
Inaugural Dreamwalk 2022
The inaugural dream walk put students in high spirits for the rest of the year, as they were able to express and celebrate their dreams and aspirations.

The inaugural dream walk at the University of the Free State took place on the Bloemfontein Campus on 19 February 2022. The dream walk, also referred to as ‘Leeto la ditoro’, will become an annual event where first-year students come together to express and celebrate their dreams and aspirations. 

The event was well attended by Bloemfontein Campus first-year students, who believe that the event is a great way to set the tone for the rest of the year. The students first gathered at a station on campus, where they were issued with a faculty T-shirt, key chain, a dream card, and a mask. The official walk then began from the Visitor Centre Gate on the northwest side of the Bloemfontein Campus to the Main Building, where members of the senior leadership are based.
During the walk, first-year students had to write down their dreams and aspirations on the dream card, which they ultimately placed in a box at the Main Building. “I found it amazing to be able to put my dreams on paper; it makes them more realistic,” highlighted Marise Prinsloo, a first-year student from the Outeniqua residence. Although some of the aspirations were too personal for some first-year students to speak about, others’ aspirations varied from academic success, spiritual wellness, and mental and physical health. In fact, Malcolm Willemse, who is also a first-year student from Outeniqua, hopes to secure a number of leadership positions. “I have dreams of being in the first-year committee and of being in the sub-committees, and I managed to write these down,” he shared. 

In addition, the atmosphere at the event was vibrant, as the students were excited to engage with one another. “It was amazing to walk with other residences such as Villa Bravado, Abraham Fischer, and Conlaurês, as they have great spirit,’’ expressed Willemse. The walk included songs from the various residences, and the first-year students were dancing and singing along. However, the fun did not end there. Once the students arrived at the Main Building, they were treated to a DJ who had them dancing and singing even more.

As the dream walk event will also take place on the Qwaqwa and South Campuses, the students on these campuses can expect to take part in a lot of singing, dancing, and other cultural activities. Precious Modiba, who is also a first-year student, argues that besides having a good time, one of the best things about the dream walk is the friends that one gets to make.

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept