Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
25 February 2022 | Story Anthony Mthembu | Photo Victor Ramphore Mahlohla (baddapictures)
Inaugural Dreamwalk 2022
The inaugural dream walk put students in high spirits for the rest of the year, as they were able to express and celebrate their dreams and aspirations.

The inaugural dream walk at the University of the Free State took place on the Bloemfontein Campus on 19 February 2022. The dream walk, also referred to as ‘Leeto la ditoro’, will become an annual event where first-year students come together to express and celebrate their dreams and aspirations. 

The event was well attended by Bloemfontein Campus first-year students, who believe that the event is a great way to set the tone for the rest of the year. The students first gathered at a station on campus, where they were issued with a faculty T-shirt, key chain, a dream card, and a mask. The official walk then began from the Visitor Centre Gate on the northwest side of the Bloemfontein Campus to the Main Building, where members of the senior leadership are based.
During the walk, first-year students had to write down their dreams and aspirations on the dream card, which they ultimately placed in a box at the Main Building. “I found it amazing to be able to put my dreams on paper; it makes them more realistic,” highlighted Marise Prinsloo, a first-year student from the Outeniqua residence. Although some of the aspirations were too personal for some first-year students to speak about, others’ aspirations varied from academic success, spiritual wellness, and mental and physical health. In fact, Malcolm Willemse, who is also a first-year student from Outeniqua, hopes to secure a number of leadership positions. “I have dreams of being in the first-year committee and of being in the sub-committees, and I managed to write these down,” he shared. 

In addition, the atmosphere at the event was vibrant, as the students were excited to engage with one another. “It was amazing to walk with other residences such as Villa Bravado, Abraham Fischer, and Conlaurês, as they have great spirit,’’ expressed Willemse. The walk included songs from the various residences, and the first-year students were dancing and singing along. However, the fun did not end there. Once the students arrived at the Main Building, they were treated to a DJ who had them dancing and singing even more.

As the dream walk event will also take place on the Qwaqwa and South Campuses, the students on these campuses can expect to take part in a lot of singing, dancing, and other cultural activities. Precious Modiba, who is also a first-year student, argues that besides having a good time, one of the best things about the dream walk is the friends that one gets to make.

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept