Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 February 2022 | Story Leonie Bolleurs and Nonsindiso Qwabe | Photo Supplied
The superpowers of women scientists at the UFS

The University of the Free State (UFS) has implemented several interventions to increase the diversity of its researchers, including its women scientists. Actions have paid off and resulted in an increase in the percentage of rated female researchers, from 27% in 2016 to 34% in 2021.


The university is also host to a number of science leaders in the six National Research Foundation (NRF)-funded South African Research Chairs Initiative (SARChI). Four of these research chairs are held by women. These are the research chairs in Vector-borne and Zoonotic Pathogens; Disease Resistance and Quality in Field Crops; Higher Education and Human Development; and Pathogenic Yeasts.

Health, medicine, and food sustainability are but three examples of areas in society where the women of the UFS is playing a critical role in science today.

In celebration of the International Day of Women and Girls in Science instituted by the United Nations General Assembly on 22 December 2015, the UFS is honouring its women scientists.

The science of science expos

One of the researchers at the UFS who is using science to make a difference in the lives of learners in our country, is Dr Angela Stott, Researcher and Teacher Educator in the Division of Social Responsibilities Projects (SRP) on the UFS South Campus. Together with colleagues in the SRP, she is involved in numerous Maths and Science outreach interventions to teachers and learners.

Science becomes fun for learners through the different initiatives created by Dr Stott and her colleagues. These include the online Learn Science programme (a brainchild of Dr Stott), using tablets donated by ioT.nxt, and the Creative Clubs intervention started by Dr Joleen Hamilton, a colleague of Dr Stott. In the latter, learners can take part in a MathArt competition and coding sessions.

In this year’s Creative Clubs projects, 100 Grade 9 learners from township schools will be mentored to prepare science fair projects for participation in the Expo for Young Scientists.

But why all this hard work for an expo? For these learners, the expo is more than just a public platform to showcase excellence. According to Dr Stott, learners in South African township schools tend not to be stimulated in extracurricular programmes, since teaching in these contexts is typically restricted to exam training.

However, her research has shown that higher-achieving learners from contexts of poverty respond well to such programmes and gain valuable knowledge, skills, and values from them. “This year, 100 higher-achieving Grade 9 learners from township schools will benefit from this programme, and next year another 100,” she says.

She adds that literature on this subject points to the need for structure, while also supporting learners’ development of autonomy when mentoring a learner to produce a science fair project. Dr Stott explains that the online programme around which this year’s intervention is built, has been created in a manner informed by literature on what is most likely to work. “By us researching the process, we will improve our understanding of how to maximise the benefits and mitigate the weaknesses that learners from poverty gain from such participation. This knowledge could help improve the effectiveness of such programmes throughout the country, and in other parts of the world where similar conditions apply,” she says.

Fighting for stronger immune systems

An international student from Zimbabwe, Nakai Matongera, a PhD graduate in Plant Breeding in the Department of Plant Sciences on the Bloemfontein Campus, is playing a key role in food sustainability in Africa with her research. She is a maize breeder working at the Scientific and Industrial Research and Development Centre (SIRDC) in Harare, Zimbabwe.

The focus of her PhD thesis is on the development of high-yielding and nutrient-dense maize varieties enriched with provitamin A, zinc, and essential amino acids such as lysine and tryptophan.

“With my research, I aimed to develop zinc-enhanced maize varieties that have great potential to reduce zinc deficiency in maize-based developing countries in sub-Saharan Africa,” she says.

Matongera explains that zinc-enhanced hybrids were developed by crossing introduced zinc donors and locally adapted maize inbred lines from three nutritional categories (normal, provitamin A, and quality protein maize (QPM). The hybrids were evaluated for both agronomic and nutritional performance under optimum drought and low nitrogen conditions.

“Results indicated that zinc-enhanced QPM hybrids accumulated high zinc under all growing conditions. However, the zinc-enhanced normal hybrids had the highest yield potential, implying dilution effects.”

“I find my research rewarding, because this biofortification strategy to combat micronutrient deficiency is cost-effective and has wide coverage and sustainability compared to other strategies such as clinical supplementation and food fortification,” says Matongera.

The outcomes of her research will one day, when it is implemented, change the lives of thousands of children in Africa who are suffering from zinc and iron deficiency. The shortage of zinc and iron in their diets affects their cognitive development as well as their immune systems, making them susceptible to a number of illnesses, including diarrhoea.

According to Prof Maryke Labuschagne, Nakai’s supervisor for her PhD study, this research will have a practical impact in Africa, as it will contribute towards the nutritional value of food.

Saving generations of humans and animals

When she could not pursue her childhood dream of becoming a vet, Dr Nthatisi Nyembe forged a new path in zoology, and today she is working in the Department of Zoology and Entomology on the UFS Qwaqwa Campus, where she focuses on veterinary parasitology.

Dr Nyembe’s research looks at the treatment and epidemiology of parasitic diseases in animals and humans, because – as she says – if animals are healthy, then humans are healthy. She says the ripple effect could save generations to come. “I want to be remembered for creating a drug that will make life easier for animals, because if animals are healthy, then the food we consume will also be healthy,” she says.

Dr Nyembe completed her studies on the Qwaqwa Campus from undergraduate to master’s level, specialising in Zoology. She was then awarded a scholarship to complete her PhD studies in Japan, where she spent four years looking into creating compounds that can treat and prevent unwanted parasites in animals, with a specific focus on mice.

“If I can get to a point where I can find one compound that has various benefits on multiple micro-organisms, then I will be happy”, she says.

While acknowledging the wide gender gap that still persists in her field of science, Nyembe says it should not hinder young girls who are interested in pursuing all levels of science.

“Society still looks down on girls and women, especially in Africa. If I go to a farmer as a woman and try to advise them about animal health, very few of them are receptive. However, the majority believe that I need to come with a man in order to be taken seriously. I just want to tell young aspiring female scientists that it is possible.”

“Whatever you put your mind to, you can pull through and achieve. Don’t allow yourself to be intimidated.”

News Archive

Bloemfontein's quality of tap water compares very favourably with bottled water
2009-08-04

The quality of the drinking water of five suburbs in Bloemfontein is at least as good as or better than bottled water. This is the result of a standard and chemical bacterial analysis done by the University of the Free State’s (UFS) Centre for Environmental Management in collaboration with the Institute for Groundwater Studies (IGS).

Five samples were taken from tap water sources in the suburbs of Universitas, Brandwag, Bain’s Vlei, Langenhoven Park and Bayswater and 15 samples were taken of different brands of still and unflavoured bottled water. The samples were analysed at the laboratory of the IGS, while the interpretation of the analysis was done by the Centre for Environmental Management.

“We wanted to evaluate the difference in quality for human consumption between tap water and that of the different brands of bottled water,” said Prof. Maitland Seaman, Head of the Centre for Environmental Management.

“With the exception of two samples produced by multinational companies at their plants in South Africa, the different brands of bottled water used for the study were produced by South African companies, including a local small-scale Bloemfontein producer,” said Prof. Seaman.

According to the labels, the sources of the water vary from pure spring water, to partial reverse osmosis (as an aid to standardise salt, i.e. mineral, content), to only reverse osmosis (to remove salts). (Reverse osmosis is a process in which water is forced under pressure through a pipe with minute pores through which water passes but no – or very low concentrations of – salts pass.)

According to Prof. Seaman, the analysis revealed some interesting findings, such as:

• It is generally accepted that drinking water should have an acceptable level of salt content, as the body needs salts. Most mineral contents were relatively higher in the tap water samples than the bottled water samples and were very much within the acceptable range of drinkable water quality. One of the bottled samples, however, had a very low mineral content, as the water was produced by reverse osmosis, as stated on the bottle. While reverse osmosis is used by various producers, most producers use it as an aid, not as a single method to remove nearly all the salts. Drinking only such water over a prolonged period may probably have a negative effect on the human physiology.

• The pH values of the tap water samples (8,12–8,40) were found to be slightly higher (slightly alkaline), like in all south-eastern Free State rivers (from where the water is sourced) than the pH of most of the bottled water samples, most of which are sourced and/or treated in other areas. Two brands of bottled water were found to have relatively low pH levels (both 4,5, i.e. acidic) as indicated on their bottles and as confirmed by the IGS analysis. The health implication of this range of pH is not significant.

• The analysis showed differences in the mineral content given on the labels of most of the water bottles compared to that found by IGS analysis. The possibility of seasonal fluctuation in content, depending on various factors, is expected and most of the bottling companies also indicate this on their labels. What was a rather interesting finding was that two pairs of bottled water brands claimed exactly the same mineral content but appeared under different brand names and were also priced differently. In each case, one of the pair was a well-known house brand, and the other obviously the original producer. In one of these paired cases, the house brand stated that the water was spring water, while the other (identical) “original” brand stated that it was spring water treated by reverse osmosis and oxygen-enriched.

• Nitrate (NO3) levels were uniformly low except in one bottled sample, suggesting a low (non-threatening) level of organic pollution in the source water. Otherwise, none of the water showed any sign of pollution.

• The bacterial analysis confirmed the absence of any traces of coliforms or E.coli in any of the samples, as was also indicated by the bottling companies. This is very reassuring. What is not known is how all these waters were sterilised, which could be anything from irradiation to chlorine or ozone treatment.

• The price of the different brands of bottled water, each containing 500 ml of still water, ranged between R3,99 and R8,99, with R5,03 being the average price. A comparison between the least expensive and the most expensive bottles of water indicated no significant difference in quality. In fact, discrepancies were observed in the most expensive bottle in that the amount of Calcium (Ca) claimed to be present in it was found to be significantly different from what the analysis indicated (29,6 mg/l versus 0,92 mg/l). The alkalinity (CaCO3 mg/l) indicated on the bottle was also found to differ considerably (83 mg/l versus 9,4 mg/l). The concentration of Total Dissolved Salts (TDS) was not given on the product.

“The preference for bottled water as compared to Bloemfontein’s tap water from a qualitative perspective as well as the price discrepancy is unjustifiable. The environmental footprint of bottled water is also large. Sourcing, treating, bottling, packaging and transporting, to mention but a few of the steps involved in the processing of bottled water, entail a huge carbon footprint, as well as a large water footprint, because it also requires water for treating and rinsing to process bottled water,” said Prof. Seaman.

Media Release
Lacea Loader
Deputy Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
3 August 2009

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept