Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 February 2022 | Story Leonie Bolleurs and Nonsindiso Qwabe | Photo Supplied
The superpowers of women scientists at the UFS

The University of the Free State (UFS) has implemented several interventions to increase the diversity of its researchers, including its women scientists. Actions have paid off and resulted in an increase in the percentage of rated female researchers, from 27% in 2016 to 34% in 2021.


The university is also host to a number of science leaders in the six National Research Foundation (NRF)-funded South African Research Chairs Initiative (SARChI). Four of these research chairs are held by women. These are the research chairs in Vector-borne and Zoonotic Pathogens; Disease Resistance and Quality in Field Crops; Higher Education and Human Development; and Pathogenic Yeasts.

Health, medicine, and food sustainability are but three examples of areas in society where the women of the UFS is playing a critical role in science today.

In celebration of the International Day of Women and Girls in Science instituted by the United Nations General Assembly on 22 December 2015, the UFS is honouring its women scientists.

The science of science expos

One of the researchers at the UFS who is using science to make a difference in the lives of learners in our country, is Dr Angela Stott, Researcher and Teacher Educator in the Division of Social Responsibilities Projects (SRP) on the UFS South Campus. Together with colleagues in the SRP, she is involved in numerous Maths and Science outreach interventions to teachers and learners.

Science becomes fun for learners through the different initiatives created by Dr Stott and her colleagues. These include the online Learn Science programme (a brainchild of Dr Stott), using tablets donated by ioT.nxt, and the Creative Clubs intervention started by Dr Joleen Hamilton, a colleague of Dr Stott. In the latter, learners can take part in a MathArt competition and coding sessions.

In this year’s Creative Clubs projects, 100 Grade 9 learners from township schools will be mentored to prepare science fair projects for participation in the Expo for Young Scientists.

But why all this hard work for an expo? For these learners, the expo is more than just a public platform to showcase excellence. According to Dr Stott, learners in South African township schools tend not to be stimulated in extracurricular programmes, since teaching in these contexts is typically restricted to exam training.

However, her research has shown that higher-achieving learners from contexts of poverty respond well to such programmes and gain valuable knowledge, skills, and values from them. “This year, 100 higher-achieving Grade 9 learners from township schools will benefit from this programme, and next year another 100,” she says.

She adds that literature on this subject points to the need for structure, while also supporting learners’ development of autonomy when mentoring a learner to produce a science fair project. Dr Stott explains that the online programme around which this year’s intervention is built, has been created in a manner informed by literature on what is most likely to work. “By us researching the process, we will improve our understanding of how to maximise the benefits and mitigate the weaknesses that learners from poverty gain from such participation. This knowledge could help improve the effectiveness of such programmes throughout the country, and in other parts of the world where similar conditions apply,” she says.

Fighting for stronger immune systems

An international student from Zimbabwe, Nakai Matongera, a PhD graduate in Plant Breeding in the Department of Plant Sciences on the Bloemfontein Campus, is playing a key role in food sustainability in Africa with her research. She is a maize breeder working at the Scientific and Industrial Research and Development Centre (SIRDC) in Harare, Zimbabwe.

The focus of her PhD thesis is on the development of high-yielding and nutrient-dense maize varieties enriched with provitamin A, zinc, and essential amino acids such as lysine and tryptophan.

“With my research, I aimed to develop zinc-enhanced maize varieties that have great potential to reduce zinc deficiency in maize-based developing countries in sub-Saharan Africa,” she says.

Matongera explains that zinc-enhanced hybrids were developed by crossing introduced zinc donors and locally adapted maize inbred lines from three nutritional categories (normal, provitamin A, and quality protein maize (QPM). The hybrids were evaluated for both agronomic and nutritional performance under optimum drought and low nitrogen conditions.

“Results indicated that zinc-enhanced QPM hybrids accumulated high zinc under all growing conditions. However, the zinc-enhanced normal hybrids had the highest yield potential, implying dilution effects.”

“I find my research rewarding, because this biofortification strategy to combat micronutrient deficiency is cost-effective and has wide coverage and sustainability compared to other strategies such as clinical supplementation and food fortification,” says Matongera.

The outcomes of her research will one day, when it is implemented, change the lives of thousands of children in Africa who are suffering from zinc and iron deficiency. The shortage of zinc and iron in their diets affects their cognitive development as well as their immune systems, making them susceptible to a number of illnesses, including diarrhoea.

According to Prof Maryke Labuschagne, Nakai’s supervisor for her PhD study, this research will have a practical impact in Africa, as it will contribute towards the nutritional value of food.

Saving generations of humans and animals

When she could not pursue her childhood dream of becoming a vet, Dr Nthatisi Nyembe forged a new path in zoology, and today she is working in the Department of Zoology and Entomology on the UFS Qwaqwa Campus, where she focuses on veterinary parasitology.

Dr Nyembe’s research looks at the treatment and epidemiology of parasitic diseases in animals and humans, because – as she says – if animals are healthy, then humans are healthy. She says the ripple effect could save generations to come. “I want to be remembered for creating a drug that will make life easier for animals, because if animals are healthy, then the food we consume will also be healthy,” she says.

Dr Nyembe completed her studies on the Qwaqwa Campus from undergraduate to master’s level, specialising in Zoology. She was then awarded a scholarship to complete her PhD studies in Japan, where she spent four years looking into creating compounds that can treat and prevent unwanted parasites in animals, with a specific focus on mice.

“If I can get to a point where I can find one compound that has various benefits on multiple micro-organisms, then I will be happy”, she says.

While acknowledging the wide gender gap that still persists in her field of science, Nyembe says it should not hinder young girls who are interested in pursuing all levels of science.

“Society still looks down on girls and women, especially in Africa. If I go to a farmer as a woman and try to advise them about animal health, very few of them are receptive. However, the majority believe that I need to come with a man in order to be taken seriously. I just want to tell young aspiring female scientists that it is possible.”

“Whatever you put your mind to, you can pull through and achieve. Don’t allow yourself to be intimidated.”

News Archive

UFS boasts with most advanced chemical research apparatus in Africa
2005-11-23

Celebrating the inauguration of the NMR were from the left Prof Frederick Fourie (Rector and Vice-Chancellor of the UFS),  Dr Detlef Müller (Development Scientist and Manager:  Africa and Asia of Bruker in Germany, the supplier of the NMR), Prof Jannie Swarts (head of the head of the Division Physical Chemistry at the UFS) and Prof Herman van Schalkwyk (Dean:  Faculty of Natural and Agricultural Sciences at the UFS). Photo: Lacea Loader

UFS boasts with most advanced chemical research apparatus in Africa 

The University of the Free State’s (UFS) Department of Chemistry now boasts with some of the most advanced chemical research apparatus in Africa after the latest addition, a nuclear magnetic resonance (NMR) spectrometer, was inaugurated today by the Rector and Vice-Chancellor, Prof Frederick Fourie.  The NMR is used to analyse molecular structures. 

Last month the Department of Chemistry celebrated the installation of the most advanced single crystal X-ray diffractometer in Africa.  The diffractometer provides an indispensable technique to investigate among others the solid state of compounds for medicinal application.

“Three years ago the UFS executive management realised that, if we want to build a university of excellence, we should invest in research.  We started to think strategically about chemistry and decided to bring the apparatus at the Department of Chemistry on a more competitive standard.  Strategic partnerships were therefore secured with companies like Sasol,” said Prof Fourie during the inauguration ceremony.

“The installation of the NMR symbolises the ability of the UFS to turn academic areas around.  I hope that this is the beginning of a decade of excellence for chemistry at the UFS,” said Prof Fourie.

”The catalogue value of the Bruker 600 MHz NMR is approximately R11 million.  With such an advanced apparatus we are now able to train much more post-graduate students,“ said Prof Jannie Swarts, head of the Division Physical Chemistry at the UFS.

”The NMR is the flagship apparatus of the UFS Department of Chemistry that enables chemists to look at compounds more easily at a molecular level.  Research in chemistry is critically dependent on NMR, which is a technique that can determine the composition of reactants and products in complicated chemical reactions, with direct application is most focus areas in chemistry,“ said Prof Swarts.

”Parts of the spectrometer consists of non-commercial items that were specifically designed for the UFS Department of Chemistry to allow the study of unique interactions in e.g. rhodium and platinum compounds,” said Prof Swarts.

According to Prof Swarts the NMR enables chemists to conduct investigations on the following:

To evaluate for example the complex behaviour of DNA in proteins as well as the analysis of illegal drugs sometimes used by athletes. 
It provides an indispensable technique to investigate compounds for medicinal application for example in breast, prostate and related bone cancer identification and therapy, which are currently synthesised in the Department of Chemistry.  
It can also be applied to the area of homogeneous catalysis where new and improved compounds for industrial application are synthesized and characterised, whereby Sasol and even the international petrochemical industry could benefit. This analytical capacity is highly rated, especially in the current climate of increased oil prices.
The NMR can detect and identify small concentrations of impurities in feed streams in the petrochemical industry, e.g. at Sasol and also the international petrochemical industry.  These minute amounts of impurities can result in metal catalyst deactivation or decomposition and can cause million of rands worth in product losses.
It is indispensable for studying the complexity of samples that is non-crystalline. These materials represent the vast majority of chemical compounds such as solvents, gasoline, cooking oil, cleaning agents and colorants as examples. 

According to Prof Swarts the general medical technique of MRI (magnetic resonance imaging) in use at larger hospitals, is based on NMR technology.

”The NMR apparatus enabled the Department of Chemistry to characterise complex molecules that were synthesised for the multi-national company, FARMOFS-PAREXEL, and to negotiate research agreements with overseas universities,” said Prof Swarts. 

Media release
Issued by: Lacea Loader
Media Representative
Tel:  (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
22 November 2005
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept