Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 February 2022 | Story Leonie Bolleurs | Photo Supplied
Unique PhD Journeys
Prof Liezel Lues and her two doctoral students on graduation day. On the left is Dr Modeni Sibande, who is looking forward to ensuring that Public Administration and Management remains relevant to contemporary evolving issues in society. On the right is Dr Maréve Biljohn, who as a student has always shown commitment to do her best in every aspect of her PhD journey.

In nature, one often comes across cool and surreal phenomena. Experiencing rare happenings in the academia is an altogether different encounter. One that Prof Liezel Lues, Professor in the Department of Public Administration and Management at the University of the Free State (UFS), explains as winning the lottery.

Two of Prof Lues’ doctoral students – representing two different institutions – graduated in 2018. Four years later, on the exact same date, 1 March 2022, Drs Maréve Biljohn and Modeni Sibanda will take up their new positions, respectively as Head of the Department of Public Administration and Management at the UFS and Head of the Department of Public Administration at the University of Fort Hare.

 

Social innovation and service delivery

Dr Biljohn, currently Senior Lecturer in the department, did her thesis on the topic: Social innovation and service delivery by local government: a comparative perspective. With work experience in local government, Dr Biljohn had a good idea of the problems that underpin poor service delivery in this sphere of government.

Public participation in integrated development planning: a case study of Buffalo City Metropolitan Municipality, was the title of Dr Sibanda’s thesis. The study revealed how individuals and communities navigate forms of power and raise the critical consciousness of municipal residents, communities, and public officials.

According to Dr Sibanda, his study was motivated by the need to explore how public participation power dynamics influence Integrated Development Planning outcomes.

He believes by doing so, the complexity of how individuals and communities navigate forms of power in public participation platforms and spaces would be unravelled. Unravelling such public participation power dynamics, he says, would raise critical consciousness and address and challenge visible, hidden, and invisible forms of power on these public platforms and spaces. “Often public participation platforms and spaces neglect and ignore the capacity of such spaces to manage the pervasive, complex power dynamics among stakeholders in municipal strategic development planning processes. This focus to my PhD therefore sought to fill that knowledge gap,” adds Dr Sibanda.

Prof Lues says the value link to their research is buoyed in the South African Local Government. “They have both established a niche area that addresses the challenges South African municipalities face,” she adds.


“There is no doubt that they are suitable for the position of head of department at this point.”


Achieving a coveted status in their careers

On experiencing this unique journey, Prof Lues says: “Of all the relations, a relation between a promoter and a student is the most inspiring and admirable one. Any promoter takes the utmost pride when his/her taught students achieve coveted status in their respective careers. To me, it feels like winning the lottery – twice.”

News Archive

Mathematical methods used to detect and classify breast cancer masses
2016-08-10

Description: Breast lesions Tags: Breast lesions

Examples of Acho’s breast mass
segmentation identification

Breast cancer is the leading cause of female mortality in developing countries. According to the World Health Organization (WHO), the low survival rates in developing countries are mainly due to the lack of early detection and adequate diagnosis programs.

Seeing the picture more clearly

Susan Acho from the University of the Free State’s Department of Medical Physics, breast cancer research focuses on using mathematical methods to delineate and classify breast masses. Advancements in medical research have led to remarkable progress in breast cancer detection, however, according to Acho, the methods of diagnosis currently available commercially, lack a detailed finesse in accurately identifying the boundaries of breast mass lesions.

Inspiration drawn from pioneer

Drawing inspiration from the Mammography Computer Aided Diagnosis Development and Implementation (CAADI) project, which was the brainchild Prof William Rae, Head of the department of Medical Physics, Acho’s MMedSc thesis titled ‘Segmentation and Quantitative Characterisation of Breast Masses Imaged using Digital Mammography’ investigates classical segmentation algorithms, texture features and classification of breast masses in mammography. It is a rare research topic in South Africa.

 Characterisation of breast masses, involves delineating and analysing the breast mass region on a mammogram in order to determine its shape, margin and texture composition. Computer-aided diagnosis (CAD) program detects the outline of the mass lesion, and uses this information together with its texture features to determine the clinical traits of the mass. CAD programs mark suspicious areas for second look or areas on a mammogram that the radiologist might have overlooked. It can act as an independent double reader of a mammogram in institutions where there is a shortage of trained mammogram readers. 

Light at the end of the tunnel

Breast cancer is one of the most common malignancies among females in South Africa. “The challenge is being able to apply these mathematical methods in the medical field to help find solutions to specific medical problems, and that’s what I hope my research will do,” she says.

By using mathematics, physics and digital imaging to understand breast masses on mammograms, her research bridges the gap between these fields to provide algorithms which are applicable in medical image interpretation.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept