Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 February 2022 | Story Leonie Bolleurs | Photo Supplied
Unique PhD Journeys
Prof Liezel Lues and her two doctoral students on graduation day. On the left is Dr Modeni Sibande, who is looking forward to ensuring that Public Administration and Management remains relevant to contemporary evolving issues in society. On the right is Dr Maréve Biljohn, who as a student has always shown commitment to do her best in every aspect of her PhD journey.

In nature, one often comes across cool and surreal phenomena. Experiencing rare happenings in the academia is an altogether different encounter. One that Prof Liezel Lues, Professor in the Department of Public Administration and Management at the University of the Free State (UFS), explains as winning the lottery.

Two of Prof Lues’ doctoral students – representing two different institutions – graduated in 2018. Four years later, on the exact same date, 1 March 2022, Drs Maréve Biljohn and Modeni Sibanda will take up their new positions, respectively as Head of the Department of Public Administration and Management at the UFS and Head of the Department of Public Administration at the University of Fort Hare.

 

Social innovation and service delivery

Dr Biljohn, currently Senior Lecturer in the department, did her thesis on the topic: Social innovation and service delivery by local government: a comparative perspective. With work experience in local government, Dr Biljohn had a good idea of the problems that underpin poor service delivery in this sphere of government.

Public participation in integrated development planning: a case study of Buffalo City Metropolitan Municipality, was the title of Dr Sibanda’s thesis. The study revealed how individuals and communities navigate forms of power and raise the critical consciousness of municipal residents, communities, and public officials.

According to Dr Sibanda, his study was motivated by the need to explore how public participation power dynamics influence Integrated Development Planning outcomes.

He believes by doing so, the complexity of how individuals and communities navigate forms of power in public participation platforms and spaces would be unravelled. Unravelling such public participation power dynamics, he says, would raise critical consciousness and address and challenge visible, hidden, and invisible forms of power on these public platforms and spaces. “Often public participation platforms and spaces neglect and ignore the capacity of such spaces to manage the pervasive, complex power dynamics among stakeholders in municipal strategic development planning processes. This focus to my PhD therefore sought to fill that knowledge gap,” adds Dr Sibanda.

Prof Lues says the value link to their research is buoyed in the South African Local Government. “They have both established a niche area that addresses the challenges South African municipalities face,” she adds.


“There is no doubt that they are suitable for the position of head of department at this point.”


Achieving a coveted status in their careers

On experiencing this unique journey, Prof Lues says: “Of all the relations, a relation between a promoter and a student is the most inspiring and admirable one. Any promoter takes the utmost pride when his/her taught students achieve coveted status in their respective careers. To me, it feels like winning the lottery – twice.”

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept