Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 February 2022 | Story Leonie Bolleurs | Photo Supplied
Unique PhD Journeys
Prof Liezel Lues and her two doctoral students on graduation day. On the left is Dr Modeni Sibande, who is looking forward to ensuring that Public Administration and Management remains relevant to contemporary evolving issues in society. On the right is Dr Maréve Biljohn, who as a student has always shown commitment to do her best in every aspect of her PhD journey.

In nature, one often comes across cool and surreal phenomena. Experiencing rare happenings in the academia is an altogether different encounter. One that Prof Liezel Lues, Professor in the Department of Public Administration and Management at the University of the Free State (UFS), explains as winning the lottery.

Two of Prof Lues’ doctoral students – representing two different institutions – graduated in 2018. Four years later, on the exact same date, 1 March 2022, Drs Maréve Biljohn and Modeni Sibanda will take up their new positions, respectively as Head of the Department of Public Administration and Management at the UFS and Head of the Department of Public Administration at the University of Fort Hare.

 

Social innovation and service delivery

Dr Biljohn, currently Senior Lecturer in the department, did her thesis on the topic: Social innovation and service delivery by local government: a comparative perspective. With work experience in local government, Dr Biljohn had a good idea of the problems that underpin poor service delivery in this sphere of government.

Public participation in integrated development planning: a case study of Buffalo City Metropolitan Municipality, was the title of Dr Sibanda’s thesis. The study revealed how individuals and communities navigate forms of power and raise the critical consciousness of municipal residents, communities, and public officials.

According to Dr Sibanda, his study was motivated by the need to explore how public participation power dynamics influence Integrated Development Planning outcomes.

He believes by doing so, the complexity of how individuals and communities navigate forms of power in public participation platforms and spaces would be unravelled. Unravelling such public participation power dynamics, he says, would raise critical consciousness and address and challenge visible, hidden, and invisible forms of power on these public platforms and spaces. “Often public participation platforms and spaces neglect and ignore the capacity of such spaces to manage the pervasive, complex power dynamics among stakeholders in municipal strategic development planning processes. This focus to my PhD therefore sought to fill that knowledge gap,” adds Dr Sibanda.

Prof Lues says the value link to their research is buoyed in the South African Local Government. “They have both established a niche area that addresses the challenges South African municipalities face,” she adds.


“There is no doubt that they are suitable for the position of head of department at this point.”


Achieving a coveted status in their careers

On experiencing this unique journey, Prof Lues says: “Of all the relations, a relation between a promoter and a student is the most inspiring and admirable one. Any promoter takes the utmost pride when his/her taught students achieve coveted status in their respective careers. To me, it feels like winning the lottery – twice.”

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept