Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 January 2022 | Story Rulanzen Martin | Photo Supplied
Dr Mpumelelo Ncube is a dynamic an academic with a clear vision of growth for the Department of Social work and its students.

A drive to be an advocate for social justice is what drove Dr Mpumelelo Ncube, the new head of the Department of Social Work, to pursue a degree and career in Social Work. “I needed to be an advocate for social justice and empowerment of the vulnerable individuals and communities,” said Dr Ncube, who took over from Prof Sandra Ferreira earlier this year. 

Dr Ncube’s academic and professional repertoire is exceptional and his deep-rooted passion for social work is definitely a bonus for the UFS Department of Social Work. He has a PhD in Social Work from the University of Johannesburg, a master’s degree in Social Development, and a Bachelor’s degree in Social Work from the University of Witwatersrand. 

Driven by the need to succeed in whatever task he sets for himself, Dr Ncube says that he strives to make the lives of those in his path better – “The positive change should, however, begin with me so that others could easily believe in my efforts.” 

Opportunity to raise a new generation

He joined academia in 2013 after working as a psychosocial services manager in the NGO sector. “My move to the UFS was in line with my career progression and the need to contribute meaningfully at a strategic level of social work education and practice,” Dr Ncube says.  

The opportunity to work in academia has in fact provided him with an excellent opportunity. “I have the opportunity to raise a new generation of social work professionals that would be passionate, ethical and professional in their practice. In that way, my impact as an educator can be felt in all corners where my students are,” Dr Ncube says. 

An academic of note 

As a senior lecturer, he also notes the tidal changes currently sweeping through academia. He says, “In the age of the fourth industrial revolution, the Social Work academic programme should be able to identify and embrace various developments that would provide the flexibility to attract postgraduate students in different places without the need for relocation. This relates to the delivery of the programme. However, apart from adapting to these changes, the Social Work programme should also foster a cultural innovation with students and enable them to embrace the technological advancements in their social work practice.”

“I have the opportunity to raise a new generation of social work professionals that would be passionate, ethical and professional in their practice.” – Dr Mpumelelo Ncube. 


Apart from being an advocate for social justice and a lecturer he also sees his position as HOD as a being a catalyst to enable others within the department to publishing more research. “Research is a key performance area for any academic, hence the mantra, ‘publish or perish’,” he says. However, he also cautions that trick of publishing research lies in “self-discipline, self-motivation and finding a research niche”.  

Social work is his passion

Social work is Dr Ncube’s passion but he also says that it is a profession, which is “seriously underutilised especially in under developing nations”. The socio-economic conditions in these countries largely drive the underutilisation. “These are nations largely plagued by poverty, unemployment, political illiteracy challenges with policy development and implementation, and moral degeneration among many challenges,” he says. In addition, it is therefore, as Dr Ncube mentions, that “the relevance of the social work profession shall be ever-present”.

  

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept