Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 January 2022 | Story Rulanzen Martin | Photo Supplied
Dr Mpumelelo Ncube
Dr Mpumelelo Ncube is a dynamic an academic with a clear vision of growth for the Department of Social work and its students.

A drive to be an advocate for social justice is what drove Dr Mpumelelo Ncube, the new head of the Department of Social Work, to pursue a degree and career in Social Work. “I needed to be an advocate for social justice and empowerment of the vulnerable individuals and communities,” said Dr Ncube, who took over from Prof Sandra Ferreira earlier this year. 

Dr Ncube’s academic and professional repertoire is exceptional and his deep-rooted passion for social work is definitely a bonus for the UFS Department of Social Work. He has a PhD in Social Work from the University of Johannesburg, a master’s degree in Social Development, and a Bachelor’s degree in Social Work from the University of Witwatersrand. 

Driven by the need to succeed in whatever task he sets for himself, Dr Ncube says that he strives to make the lives of those in his path better – “The positive change should, however, begin with me so that others could easily believe in my efforts.” 

Opportunity to raise a new generation

He joined academia in 2013 after working as a psychosocial services manager in the NGO sector. “My move to the UFS was in line with my career progression and the need to contribute meaningfully at a strategic level of social work education and practice,” Dr Ncube says.  

The opportunity to work in academia has in fact provided him with an excellent opportunity. “I have the opportunity to raise a new generation of social work professionals that would be passionate, ethical and professional in their practice. In that way, my impact as an educator can be felt in all corners where my students are,” Dr Ncube says. 

An academic of note 

As a senior lecturer, he also notes the tidal changes currently sweeping through academia. He says, “In the age of the fourth industrial revolution, the Social Work academic programme should be able to identify and embrace various developments that would provide the flexibility to attract postgraduate students in different places without the need for relocation. This relates to the delivery of the programme. However, apart from adapting to these changes, the Social Work programme should also foster a cultural innovation with students and enable them to embrace the technological advancements in their social work practice.”

“I have the opportunity to raise a new generation of social work professionals that would be passionate, ethical and professional in their practice.” – Dr Mpumelelo Ncube. 


Apart from being an advocate for social justice and a lecturer he also sees his position as HOD as a being a catalyst to enable others within the department to publishing more research. “Research is a key performance area for any academic, hence the mantra, ‘publish or perish’,” he says. However, he also cautions that trick of publishing research lies in “self-discipline, self-motivation and finding a research niche”.  

Social work is his passion

Social work is Dr Ncube’s passion but he also says that it is a profession, which is “seriously underutilised especially in under developing nations”. The socio-economic conditions in these countries largely drive the underutilisation. “These are nations largely plagued by poverty, unemployment, political illiteracy challenges with policy development and implementation, and moral degeneration among many challenges,” he says. In addition, it is therefore, as Dr Ncube mentions, that “the relevance of the social work profession shall be ever-present”.

  

News Archive

New world-class Chemistry facilities at UFS
2011-11-22

 

A world-class research centre was introduced on Friday 18 November 2011 when the new Chemistry building on the Bloemfontein Campus of the University of the Free State (UFS) was officially opened.
The upgrading of the building, which has taken place over a period of five years, is the UFS’s largest single financial investment in a long time. The building itself has been renovated at a cost of R60 million and, together with the new equipment acquired, the total investment exceeds R110 million. The university has provided the major part of this, with valuable contributions from Sasol and the South African Research Foundation (NRF), which each contributed more than R20 million for different facets and projects.
The senior management of Sasol, NECSA (The South African Nuclear Energy Corporation), PETLabs Pharmaceuticals, and visitors from Sweden attended the opening.

Prof. Andreas Roodt, Head of the Department of Chemistry, states the department’s specialist research areas includes X-ray crystallography, electrochemistry, synthesis of new molecules, the development of new methods to determine rare elements, water purification, as well as the measurement of energy and temperatures responsible for phase changes in molecules, the development of agents to detect cancer and other defects in the body, and many more.

“We have top expertise in various fields, with some of the best equipment and currently competing with the best laboratories in the world. We have collaborative agreements with more than twenty national and international chemistry research groups of note.

“Currently we are providing inputs about technical aspects of the acid mine water in Johannesburg and vicinity, as well as the fracking in the Karoo in order to release shale gas.”

New equipment installed during the upgrading action comprises:

  • X-ray diffractometers (R5 million) for crystal research. Crystals with unknown compounds are researched on an X-ray diffractometer, which determines the distances in angstroms (1 angstrom is a ten-billionth of a metre) and corners between atoms, as well as the arrangement of the atoms in the crystal, and the precise composition of the molecules in the crystal.
  • Differential scanning calorimeter (DSC) for thermographic analyses (R4 million). Heat transfer and the accompanying changes, as in volcanoes, and catalytic reactions for new motor petrol are researched. Temperature changes, coupled with the phase switchover of fluid crystals (liquid crystals -watches, TV screens) of solid matter to fluids, are measured.
  • Nuclear-magnetic resonance (NMR: Bruker 600 MHz; R12 million, one of the most advanced systems in Africa). A NMR apparatus is closely linked with the apparatus for magnetic resonance imaging, which is commonly used in hospitals. NMR is also used to determine the structure of unknown compounds, as well as the purity of the sample. Important structural characteristics of molecules can also be identified, which is extremely important if this molecule is to be used as medication, as well as to predict any possible side effects of it.
  • High-performance Computing Centre (HPC, R5 million). The UFS’ HPC consists of approximately 900 computer cores (equal to 900 ordinary personal computers) encapsulated in one compact system handling calculations at a billion-datapoint level It is used to calculate the geometry and spatial arrangements, energy and characteristics of molecules. The bigger the molecule that is worked with, the more powerful the computers must be doing the calculations. Computing chemistry is particularly useful to calculate molecular characteristics in the absence of X-ray crystallographic or other structural information. Some reactions are so quick that the intermediary products cannot be characterised and computing chemistry is of invaluable value in that case.
  • Catalytic and high-pressure equipment (R6 million; some of the most advanced equipment in the world). The pressures reached (in comparison with those in car tyres) are in gases (100 times bigger) and in fluids (1 500 times) in order to study very special reactions. The research is undertaken, some of which are in collaboration with Sasol, to develop new petrol and petrol additives and add value to local chemicals.
  • Reaction speed equipment (Kinetics: R5 million; some of the most advanced equipment in the world). The tempo and reactions can be studied in the ultraviolet, visible and infrared area at millisecond level; if combined with the NMR, up to a microsecond level (one millionth of a second.

Typical reactions are, for example, the human respiratory system, the absorption of agents in the brain, decomposition of nanomaterials and protein, acid and basis polymerisation reactions (shaping of water-bottle plastic) and many more.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept