Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 January 2022 | Story Charlene Stanley | Photo Anja Aucamp
Dr Peet van Aardt, Letsela Motaung, and Prof Francois Strydom.

The University of the Free State (UFS) is playing a leading role in South Africa when it comes to implementing multilingualism in teaching and learning and has been one of the first tertiary institutions to establish an Academy for Multilingualism. 

The university has been working on multilingualism in various formats since 2016, when a new Language Policy was approved by the UFS Council. At a recent Universities of South Africa (USAf) colloquium, UFS representatives could share outcomes and lessons derived from the institution’s journey towards an inclusive multilingual environment.

The state of language diversity

A key starting point was to establish the state of language diversity at the UFS. A biographic survey among 17 000 students revealed that around 27% of them had Sesotho as home language, followed closely by isiZulu at around 25%. Around 13% cited isiXhosa, just under 9% Afrikaans, and 8.5% Setswana. A total of 70% of these students had English as their language of instruction in their final school year.

Translanguage Tutorials in different academic departments were among the projects introduced this year. During these tutorials students can discuss questions in any language but give feedback to the lecturer in English. This allows students to develop a better understanding of the work while enhancing their confidence to interact in English. 

“There are numerous scholars who have published on the value of shuttling between two languages – the phenomenon known as translanguaging – in order to promote a deeper and fluent understanding of the subject matter,” says Letsela Motaung, a researcher at the Centre for Teaching and Learning (CTL). “We follow a rigorous recruitment process to identify tutors among our senior and postgraduate students, who then get intensive training in peer-to-peer learning and collaboration before going on to design translanguaging activities that they put into practice.”

“We are creating a space where students can make sense of the work in their own language. In this way, we take away the stress that some students associate with language, creating a relaxed atmosphere that facilitates learning,” explains Prof Francois Strydom, Senior Director at CTL. 

Improving academic competency

Another initiative is to provide voice-overs in Sesotho, isiZulu and Afrikaans over module lessons in English. These are made available as video files on the Blackboard online learning platform, and has so far involved the Faculties of Humanities, Theology and Religion, and Natural and Agricultural Sciences. “The goal with creating these voiceovers is to improve, first and foremost, academic competency. It’s almost like providing students with an electronic tutor that’s always available,” says Dr Peet van Aardt, Custodian of the Academy for Multilingualism.

The feedback from lecturers and students on both these programmes has been overwhelmingly positive, and plans are in place for incorporating more modules next year. 

A programme also gaining momentum is the Initiative for Creative African Narratives (iCAN), where students contribute stories written in different languages to facilitate learning from and about one another. 

“We want to establish a scenario where languages are deeply respected, creating a rich environment for common understanding,” explains Prof Strydom. 

News Archive

Is milk really so well-known, asks UFS’s Prof. Osthoff
2011-03-17

Prof. Garry Osthoff
Photo: Stephen Collett

Prof. Garry Osthoff opened a whole new world of milk to the audience in his inaugural lecture, Milk: the well-known (?) food, in our Department of Microbial, Biochemical and Food Biotechnology of the Faculty of Natural and Agricultural Sciences.

Prof. Osthoff has done his research in protein chemistry, immuno-chemistry and enzymology at the Council for Scientific and Industrial Research (CSIR) in Pretoria and post-doctoral research at the Bowman-Grey School of Medicine, North Carolina, USA. That was instrumental in establishing food chemistry at the university.
 
He is involved in chemical aspects of food, with a focus on dairy science and technology. He is also involved in the research of cheese processing as well as milk evolution and concentrated on milk evolution in his lecture. Knowledge of milk from dairy animals alone does not provide all the explanations of milk as food.
 
Some aspects he highlighted in his lecture were that milk is the first food to be utilised by young mammals and that it is custom-designed for each species. “However, mankind is an opportunist and has found ways of easy access to food by the practice of agriculture, where plants as well as animals were employed or rather exploited,” he said.
 
The cow is the best-known milk producer, but environmental conditions forced man to select other animals. In spite of breeding selection, cattle seem not to have adapted to the most extreme conditions such as high altitudes with sub-freezing temperatures, deserts and marshes.
 
Prof. Osthoff said the consumption of the milk as an adult is not natural; neither is the consumption of milk across species. This practice of mankind may often have consequences, when signs of malnutrition or diseases are noticed. Two common problems are an allergy to milk and lactose intolerance.
 
Allergies are normally the result of an immune response of the consumer to the foreign proteins found in the milk. In some cases it might help to switch from one milk source to another, such as switching from cow’s milk to goat’s milk.
 
Prof. Osthoff said lactose intolerance – the inability of adult humans to digest lactose, the milk sugar – is natural, as adults lose that ability to digest lactose. The symptoms of the condition are stomach cramps and diarrhoea. This problem is mainly found in the warmer climates of the world. This could be an indication of early passive development of dairy technology. In these regions milk could not be stored in its fresh form, but in a fermented form, in which case the lactose was pre-digested by micro-organisms, and the human population never adapted to digesting lactose in adulthood.
 
According to Prof. Osthoff, it is basically the lactose in milk that has spurred dairy technology. Its fermentation has resulted in the development of yoghurts and all the cheeses that we know. In turn, the intolerance to lactose has spurred a further technological solution: lactose-free milk is currently produced by pre-digestion of lactose with enzymes.
 
It was realised that the milks and products from different species differed in quality aspects such as keeping properties and taste. It was also realised that the nutritional properties differed as well as their effects on health. One example is the mentioned allergy against cow’s milk proteins, which may be solved by the consumption of goat’s milk. The nutritional benefits and technological processing of milk aroused an interest in more information, and it was realised that the information gained from human milk and that of the few domesticated species do not provide a complete explanation of the properties of milk as food. Of the 250 species of milk which have been studied, only the milk of humans and a few domesticated dairy animals has been studied in detail.

Media Release
15 March 2011
Issued by: Lacea Loader
Director: Strategic Communication
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: news@ufs.ac.za

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept