Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 January 2022 | Story Charlene Stanley | Photo Anja Aucamp
Dr Peet van Aardt, Letsela Motaung, and Prof Francois Strydom.

The University of the Free State (UFS) is playing a leading role in South Africa when it comes to implementing multilingualism in teaching and learning and has been one of the first tertiary institutions to establish an Academy for Multilingualism. 

The university has been working on multilingualism in various formats since 2016, when a new Language Policy was approved by the UFS Council. At a recent Universities of South Africa (USAf) colloquium, UFS representatives could share outcomes and lessons derived from the institution’s journey towards an inclusive multilingual environment.

The state of language diversity

A key starting point was to establish the state of language diversity at the UFS. A biographic survey among 17 000 students revealed that around 27% of them had Sesotho as home language, followed closely by isiZulu at around 25%. Around 13% cited isiXhosa, just under 9% Afrikaans, and 8.5% Setswana. A total of 70% of these students had English as their language of instruction in their final school year.

Translanguage Tutorials in different academic departments were among the projects introduced this year. During these tutorials students can discuss questions in any language but give feedback to the lecturer in English. This allows students to develop a better understanding of the work while enhancing their confidence to interact in English. 

“There are numerous scholars who have published on the value of shuttling between two languages – the phenomenon known as translanguaging – in order to promote a deeper and fluent understanding of the subject matter,” says Letsela Motaung, a researcher at the Centre for Teaching and Learning (CTL). “We follow a rigorous recruitment process to identify tutors among our senior and postgraduate students, who then get intensive training in peer-to-peer learning and collaboration before going on to design translanguaging activities that they put into practice.”

“We are creating a space where students can make sense of the work in their own language. In this way, we take away the stress that some students associate with language, creating a relaxed atmosphere that facilitates learning,” explains Prof Francois Strydom, Senior Director at CTL. 

Improving academic competency

Another initiative is to provide voice-overs in Sesotho, isiZulu and Afrikaans over module lessons in English. These are made available as video files on the Blackboard online learning platform, and has so far involved the Faculties of Humanities, Theology and Religion, and Natural and Agricultural Sciences. “The goal with creating these voiceovers is to improve, first and foremost, academic competency. It’s almost like providing students with an electronic tutor that’s always available,” says Dr Peet van Aardt, Custodian of the Academy for Multilingualism.

The feedback from lecturers and students on both these programmes has been overwhelmingly positive, and plans are in place for incorporating more modules next year. 

A programme also gaining momentum is the Initiative for Creative African Narratives (iCAN), where students contribute stories written in different languages to facilitate learning from and about one another. 

“We want to establish a scenario where languages are deeply respected, creating a rich environment for common understanding,” explains Prof Strydom. 

News Archive

Champagne and cancer have more in common than you might think
2013-05-08

 

Photo: Supplied
08 May 2013

No, a glass of champagne will not cure cancer....

…But they have more in common than you might think.

Researchers from the Departments of Microbial Biochemical and Food Biotechnology, Physics and the Centre for Microscopy at the University of the Free State in South Africa were recently exploring the properties of yeast cells in wine and food to find out more of how yeast was able to manufacture the gas that caused bread to rise, champagne to fizz and traditional beer to foam. And the discovery they made is a breakthrough that may have enormous implications for the treatment of diseases in humans.

The team discovered that they could slice open cells with argon gas particles, and look inside. They were surprised to find a maze of tiny passages like gas chambers that allowed each cell to ‘breathe.’ It is this tiny set of ‘lungs’ that puts the bubbles in your bubbly and the bounce in your bread.

But it was the technique that the researchers used to open up the cells that caught the attention of the scientists at the Mayo Clinic (Tumor Angiogenesis and Vascular Biology Research Centre) in the US.

Using this technology, they ultimately aim to peer inside cells taken from a cancer patient to see how treatment was progressing. In this way they would be able to assist the Mayo team to target treatments more effectively, reduce dosages in order to make treatment gentler on the patient, and have an accurate view of how the cancer was being eliminated.

“Yes, we are working with the Mayo Clinic,” said Profes Lodewyk Kock from the Microbial, Biochemical and Food Biotechnology Department at the UFS.

“This technique we developed has enormous potential for cell research, whether it is for cancer treatment or any other investigation into the working of cells. Through nanotechnology, and our own invention called Auger-architectomics, we are able to see where no-one has been able to see before.”

The team of Prof Kock including Dr Chantel Swart, Kumisho Dithebe, Prof Hendrik Swart (Physics, UFS) and Prof Pieter van Wyk (Centre for Microscopy, UFS) unlocked the ‘missing link’ that explains the existence of bubbles inside yeasts, and incidentally have created a possible technique for tracking drug and chemotherapy treatment in human cells.

Their work has been published recently in FEMS Yeast Research, the leading international journal on yeast research. In addition, their discovery has been selected for display on the cover page of all 2013 issues of this journal.

One can most certainly raise a glass of champagne to celebrate that!

There are links for video lectures on the technique used and findings on the Internet at:

1. http://vimeo.com/63643628 (Comic version for school kids)

2. http://vimeo.com/61521401 (Detailed version for fellow scientists)

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept