Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 January 2022 | Story Charlene Stanley | Photo Anja Aucamp
Dr Peet van Aardt, Letsela Motaung, and Prof Francois Strydom.

The University of the Free State (UFS) is playing a leading role in South Africa when it comes to implementing multilingualism in teaching and learning and has been one of the first tertiary institutions to establish an Academy for Multilingualism. 

The university has been working on multilingualism in various formats since 2016, when a new Language Policy was approved by the UFS Council. At a recent Universities of South Africa (USAf) colloquium, UFS representatives could share outcomes and lessons derived from the institution’s journey towards an inclusive multilingual environment.

The state of language diversity

A key starting point was to establish the state of language diversity at the UFS. A biographic survey among 17 000 students revealed that around 27% of them had Sesotho as home language, followed closely by isiZulu at around 25%. Around 13% cited isiXhosa, just under 9% Afrikaans, and 8.5% Setswana. A total of 70% of these students had English as their language of instruction in their final school year.

Translanguage Tutorials in different academic departments were among the projects introduced this year. During these tutorials students can discuss questions in any language but give feedback to the lecturer in English. This allows students to develop a better understanding of the work while enhancing their confidence to interact in English. 

“There are numerous scholars who have published on the value of shuttling between two languages – the phenomenon known as translanguaging – in order to promote a deeper and fluent understanding of the subject matter,” says Letsela Motaung, a researcher at the Centre for Teaching and Learning (CTL). “We follow a rigorous recruitment process to identify tutors among our senior and postgraduate students, who then get intensive training in peer-to-peer learning and collaboration before going on to design translanguaging activities that they put into practice.”

“We are creating a space where students can make sense of the work in their own language. In this way, we take away the stress that some students associate with language, creating a relaxed atmosphere that facilitates learning,” explains Prof Francois Strydom, Senior Director at CTL. 

Improving academic competency

Another initiative is to provide voice-overs in Sesotho, isiZulu and Afrikaans over module lessons in English. These are made available as video files on the Blackboard online learning platform, and has so far involved the Faculties of Humanities, Theology and Religion, and Natural and Agricultural Sciences. “The goal with creating these voiceovers is to improve, first and foremost, academic competency. It’s almost like providing students with an electronic tutor that’s always available,” says Dr Peet van Aardt, Custodian of the Academy for Multilingualism.

The feedback from lecturers and students on both these programmes has been overwhelmingly positive, and plans are in place for incorporating more modules next year. 

A programme also gaining momentum is the Initiative for Creative African Narratives (iCAN), where students contribute stories written in different languages to facilitate learning from and about one another. 

“We want to establish a scenario where languages are deeply respected, creating a rich environment for common understanding,” explains Prof Strydom. 

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept