Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 January 2022 | Story Elsabé Brits
Dr Monique De Milander
Dr Monique de Milander, Lecturer in Exercise and Sport Sciences at the UFS, is leading research on attention-deficit hyperactivity disorder (ADHD) and visual and motor control difficulties.

Research done by the University of the Free State (UFS) has shown that Grade 1 learners not only experience visual problems, but also developmental coordination disorder. Teachers and parents can help to identify this.

In the first study published in the South African Journal of Child Health (https://doi.org/10.7196/SAJCH.2021.v15i1.1705), Dr Monique de Milander, Lecturer in Exercise and Sport Sciences at the UFS, led research on attention-deficit hyperactivity disorder (ADHD) and visual and motor control difficulties.

“Visual problems are often overlooked and are seen as a hidden disability. Thus, children are labelled as ADD/ADHD, but in fact, they have learning-related visual problems. Our eyes connect the world with the brain, and we receive 80-90% of information from our eyes. Consequently, visual problems lead to poor vision, and these visual problems will interfere with children’s ability to learn in the classroom,” she explains.

During the study, ADHD symptoms were found to be significantly associated with half of the visual functioning difficulties. These skills include fixation – the ability to fixate on a stationary object with both eyes – in addition to fixating with the eyes independently.

Ocular alignment of the right eye was indicated as a problem – the ability of the two eyes to work together in order to view an object clearly. Therefore, the eyes must move in a coordinated manner. Visual tracking was the skill that the children struggled with the most in both screening tests; thus, to follow a moving object. This was found for both eyes – the right eye on an X shape, and the left eye on a circle.

She added that science suggests that although children at the age of five or six can perform a variety of manipulative skills such as catching, throwing, kicking, and hitting, the manipulative skills that require visual tracking or the ability to intercept moving objects, develop somewhat later (eight years) due to the sophisticated visual-motor requirements.

Furthermore, although maturation plays a role in achieving these skills, children need opportunities to practise the skills in a variety of settings. Parents and teachers should encourage children to take part in physical activities and sports, in addition to proper instruction on how to perform the manipulative skills.

How will these visual difficulties be identified?

It is important to note that children can fixate, visually pursue objects, and reach accurate decisions about the size and shape of an object; however, some refining still has to take place. In other words, the perceptual abilities of the young child are not yet complete. Some examples of visual perception problems in a young child, as indicated by perceptual motor skills involving the eyes, are as follows:

1. Using control to intercept a ball
2. Interchanging letters and numbers
3. Poor perception of moving objects
4. Poor figure-ground perceptual abilities
5. Distance perception
6. Anticipating timing

What is the next step after identifying visual difficulties?

The first aspect to take into consideration is the age of the child, since we now know that their perceptual abilities need to be refined. If the problem continues, screening tests can be done. If the child is at risk, it is recommended that the parent see an optometrist who specialises in visual problems.

How does one assist a child with ADHD in the classroom?

Five tips for teaching students with ADHD:
1. Change activities frequently to accommodate short attention span
2. Use a positive behaviour modification programme to keep student focused on task
3. Incorporate 3-5 min of conscious relaxation at the end of the physical education period
4. Give brief instructions
5. Use activities that promote cooperation among all students

In another study led by Dr De Milander and published in the South African Journal of Childhood Education (https://sajce.co.za/index.php/sajce/article/view/930), the early identification of learners with developmental coordination disorder was researched.

In children experiencing poor motor skills (fine and gross motor coordination difficulties), without evidence of a neurological disorder and which cannot be linked to a general medical difficulty such as cerebral palsy or a pervasive development disorder, the low motor skills are significant – to such an extent that it interferes with their social competence, academic performance, and physical development, leading to problems with completing daily activities, Dr De Milander explains.

The characteristics of developmental coordination disorder are:

• Experiencing problems getting dressed and tying shoelaces
• Finding it difficult to run, skip, or jump
• Experiencing problems with visual perception
• Poor pencil grip
• Slow and hesitant movement
• Poor spatial concepts about in front, behind, next to, below, and above
• Unable to catch or kick a ball
• Finding it difficult to work in group context

She gives the following advice: Children should be motivated and challenged to participate in simple, yet enjoyable and relaxing physical activities. The focus should be on the child's strengths and not his/her weaknesses. Allow the child to play regularly in sandboxes and with clay. Improve the child’s ball skills by catching and throwing. Motor skills must be learnt through simple mastery steps. Improve the child's movement skills and make participation in movement activities enjoyable and challenging. Concentrate on reaction skills and play in which the child can participate. In extreme cases, specialised treatment by an occupational therapist and a kinderkineticist is important.

It is important to know that children do not outgrow these disorders as previously believed; therefore, many children still experience these difficulties as adolescents. Thus, if your child is experiencing any problems, take cognisance of the problem and address it as soon as possible. Professionals such as kinderkineticists are available in private practice and at various schools to assist your child in improving a variety of deviations. The kinderkineticist can evaluate your child through a standardised test to determine the problem, and then suggest an intervention to address the specific problem, as well as to prevent secondary problems such as low self-esteem, physical inactivity, overweight and obesity, etc., which are associated with these disorders.

For help, visit the website of the South African Professional Institute for Kinderkinetics where you will be able to find a kinderkineticist in your area.

Kinderkinetics is a profession aimed at promoting and optimising the neuromotor development of young children (0-13 years) through science-based physical activity.  All programmes within this profession have a preventative, stimulating, developing, and rehabilitative nature. In summary, it has the following goals:

• Promoting functional growth and proper motor development in young children.
• Focusing on certain movement activities to promote/facilitate sport-specific skills.
• Implementing appropriate rehabilitation programmes for children with growth and/or developmental disabilities in order to maintain an active, healthy lifestyle.


News Archive

Art and science help us understand the world and our place in it
2017-10-28



Description: Art and science  Tags: Art and science

At the event were, from the left: Tristan Nel, first-year Fine Arts student;
Dr Janine Allen-Spies from the Department of Fine Arts;
Prof Carlien Pohl-Albertyn from the Department of Microbiology,
Biochemical and Food Biotechnology; and Pheny Mokawane, a
Microbiology, Biochemical and Food Biotechnology student.
Photo: Charl Devenish

Although BioArt dates back as far as the 15th and 16th centuries with the work of Leonardo da Vinci, it is not every day that art and science combine. This rare phenomenon made its appearance when two totally different groups of students – studying arts and microbiology respectively – joined hands in an initiative to create BioArt.

This first-time undergraduate teaching collaboration between the Departments of Fine Arts and Microbial, Biochemical and Food Biotechnology at the University of the Free State (UFS), which is characterised by the use of living materials, such as enzymes, microbes and DNA, as well as scientific tools and methods, is exploring a number of questions. 

Different outcomes for arts and microbiology students

According to Prof Carlien Pohl-Albertyn from the Department of Microbiology, Biochemical and Food Biotechnology, one of the central questions explored in BioArt is the nature of ‘life’. “At which stage can matter be classified as being alive or living?” she asked. 

“We realised that the outcomes for the two groups of students would not be the same. For the microbiology students, the focus would be on the understanding and effective communication of a microbiological concept. For the art students the focus would be on the execution of the assignment using visual elements and applied theory of art,” said Prof Pohl-Albertyn.

Dr Janine Allen-Spies from the Department of Fine Arts added: “Art students will also be exploring strangely or previously unforeseen gaps between art and science that can be filled with imaginative interpretations which may forward creative insights in both BioArt as a developing art form and microbiology as investigative science.”

Students’ understanding of microbial evolution reflected in art
The art students had to visit the microbiology labs for their assignment as this is mostly a foreign environment for these students. “The paint medium they had to use was gouache. This medium with its bright colours works well to depict microscopic organisms in art,” Dr Allen-Spies said. 

On display at the Department of Microbial, Biochemical and Food Biotechnology on the Bloemfontein Campus, at a recent event to introduce this new initiative to a wider audience, was a range of visually and scientifically compelling paintings and artefacts (such as paintings, poems, songs, apps) which explore a theme within microbiology from a BioArt perspective that uses creativity to communicate concepts dealt with in the module Microbial Evolution and Diversity.

Any parties who are interested in buying the art can contact Dr Allen-Spies at allenj@ufs.ac.za.

Paintings and artefacts reflects students understanding of BioArt. At the recent opening of the BioArt exhibition at the UFS Department of Microbial, Biochemical and Food Biotechnology, was the work of Madeleen Jansen van Rensburg on display.

Pheny Mokawane, a Microbiology, Biochemical and Food Biotechnology student, wrote a poem for his BioArt project in the Microbial Evolution and Diversity assignment. 

 

 

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept