Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 January 2022 | Story Elsabé Brits
Dr Monique De Milander
Dr Monique de Milander, Lecturer in Exercise and Sport Sciences at the UFS, is leading research on attention-deficit hyperactivity disorder (ADHD) and visual and motor control difficulties.

Research done by the University of the Free State (UFS) has shown that Grade 1 learners not only experience visual problems, but also developmental coordination disorder. Teachers and parents can help to identify this.

In the first study published in the South African Journal of Child Health (https://doi.org/10.7196/SAJCH.2021.v15i1.1705), Dr Monique de Milander, Lecturer in Exercise and Sport Sciences at the UFS, led research on attention-deficit hyperactivity disorder (ADHD) and visual and motor control difficulties.

“Visual problems are often overlooked and are seen as a hidden disability. Thus, children are labelled as ADD/ADHD, but in fact, they have learning-related visual problems. Our eyes connect the world with the brain, and we receive 80-90% of information from our eyes. Consequently, visual problems lead to poor vision, and these visual problems will interfere with children’s ability to learn in the classroom,” she explains.

During the study, ADHD symptoms were found to be significantly associated with half of the visual functioning difficulties. These skills include fixation – the ability to fixate on a stationary object with both eyes – in addition to fixating with the eyes independently.

Ocular alignment of the right eye was indicated as a problem – the ability of the two eyes to work together in order to view an object clearly. Therefore, the eyes must move in a coordinated manner. Visual tracking was the skill that the children struggled with the most in both screening tests; thus, to follow a moving object. This was found for both eyes – the right eye on an X shape, and the left eye on a circle.

She added that science suggests that although children at the age of five or six can perform a variety of manipulative skills such as catching, throwing, kicking, and hitting, the manipulative skills that require visual tracking or the ability to intercept moving objects, develop somewhat later (eight years) due to the sophisticated visual-motor requirements.

Furthermore, although maturation plays a role in achieving these skills, children need opportunities to practise the skills in a variety of settings. Parents and teachers should encourage children to take part in physical activities and sports, in addition to proper instruction on how to perform the manipulative skills.

How will these visual difficulties be identified?

It is important to note that children can fixate, visually pursue objects, and reach accurate decisions about the size and shape of an object; however, some refining still has to take place. In other words, the perceptual abilities of the young child are not yet complete. Some examples of visual perception problems in a young child, as indicated by perceptual motor skills involving the eyes, are as follows:

1. Using control to intercept a ball
2. Interchanging letters and numbers
3. Poor perception of moving objects
4. Poor figure-ground perceptual abilities
5. Distance perception
6. Anticipating timing

What is the next step after identifying visual difficulties?

The first aspect to take into consideration is the age of the child, since we now know that their perceptual abilities need to be refined. If the problem continues, screening tests can be done. If the child is at risk, it is recommended that the parent see an optometrist who specialises in visual problems.

How does one assist a child with ADHD in the classroom?

Five tips for teaching students with ADHD:
1. Change activities frequently to accommodate short attention span
2. Use a positive behaviour modification programme to keep student focused on task
3. Incorporate 3-5 min of conscious relaxation at the end of the physical education period
4. Give brief instructions
5. Use activities that promote cooperation among all students

In another study led by Dr De Milander and published in the South African Journal of Childhood Education (https://sajce.co.za/index.php/sajce/article/view/930), the early identification of learners with developmental coordination disorder was researched.

In children experiencing poor motor skills (fine and gross motor coordination difficulties), without evidence of a neurological disorder and which cannot be linked to a general medical difficulty such as cerebral palsy or a pervasive development disorder, the low motor skills are significant – to such an extent that it interferes with their social competence, academic performance, and physical development, leading to problems with completing daily activities, Dr De Milander explains.

The characteristics of developmental coordination disorder are:

• Experiencing problems getting dressed and tying shoelaces
• Finding it difficult to run, skip, or jump
• Experiencing problems with visual perception
• Poor pencil grip
• Slow and hesitant movement
• Poor spatial concepts about in front, behind, next to, below, and above
• Unable to catch or kick a ball
• Finding it difficult to work in group context

She gives the following advice: Children should be motivated and challenged to participate in simple, yet enjoyable and relaxing physical activities. The focus should be on the child's strengths and not his/her weaknesses. Allow the child to play regularly in sandboxes and with clay. Improve the child’s ball skills by catching and throwing. Motor skills must be learnt through simple mastery steps. Improve the child's movement skills and make participation in movement activities enjoyable and challenging. Concentrate on reaction skills and play in which the child can participate. In extreme cases, specialised treatment by an occupational therapist and a kinderkineticist is important.

It is important to know that children do not outgrow these disorders as previously believed; therefore, many children still experience these difficulties as adolescents. Thus, if your child is experiencing any problems, take cognisance of the problem and address it as soon as possible. Professionals such as kinderkineticists are available in private practice and at various schools to assist your child in improving a variety of deviations. The kinderkineticist can evaluate your child through a standardised test to determine the problem, and then suggest an intervention to address the specific problem, as well as to prevent secondary problems such as low self-esteem, physical inactivity, overweight and obesity, etc., which are associated with these disorders.

For help, visit the website of the South African Professional Institute for Kinderkinetics where you will be able to find a kinderkineticist in your area.

Kinderkinetics is a profession aimed at promoting and optimising the neuromotor development of young children (0-13 years) through science-based physical activity.  All programmes within this profession have a preventative, stimulating, developing, and rehabilitative nature. In summary, it has the following goals:

• Promoting functional growth and proper motor development in young children.
• Focusing on certain movement activities to promote/facilitate sport-specific skills.
• Implementing appropriate rehabilitation programmes for children with growth and/or developmental disabilities in order to maintain an active, healthy lifestyle.


News Archive

Boyden Observatory turns 120
2009-05-13

 

At the celebration of the 120th year of existence of the UFS's Boyden Observatory are, from the left: Prof. Herman van Schalkwyk, Dean: Faculty of Natural and Agricultural Sciences at the UFS, Prof. Driekie Hay, Vice-Rector: Academic Planning at the UFS, Mr Ian Heyns from AngloGold Ashanti and his wife, Cheryl, and Prof. François Retief, former rector of the UFS and patron of the Friends of Boyden.
Photo: Hannes Pieterse

The Boyden Observatory, one of the oldest observatories in the Southern Hemisphere and a prominent beacon in Bloemfontein, recently celebrated its 120th year of existence.

This milestone was celebrated by staff, students, other dignitaries of the University of the Free State (UFS) and special guests at the observatory last week.

“The observatory provides the Free State with a unique scientific, educational and tourist facility. No other city in South Africa, and few in the world, has a public observatory with telescopes the size and quality of those at Boyden,” said Prof. Herman van Schalkwyk, Dean of the Faculty of Natural and Agricultural Sciences at the UFS.

The observatory, boasting the third-largest optical telescope in South Africa, has a long and illustrious history. It was established on a temporary site on Mount Harvard near the small town of Chosica, Peru in 1889. Later it was moved to Arequipa in Peru where important astronomical observations were made from 1891 to 1926. “However, due to unstable weather patterns and observing conditions, it was decided to move the Boyden Station to another site somewhere else in the Southern Hemisphere, maybe South Africa,” said Prof. Van Schalkwyk.

South Africa's excellent climatic conditions were fairly well known and in 1927 the instruments were shipped and the Boyden Station was set up next to Maselspoort near Bloemfontein. Observations began in September 1927 and in 1933 the new site was officially completed, including the 60 inch (1.5 m) telescope, which was then the largest optical telescope in the Southern Hemisphere. This telescope was recently refurbished to a modern research instrument.

The observatory has various other telescopes and one of them, the 13" refractor telescope, which was sent to Arequipa in 1891 and later to Bloemfontein, is still in an excellent condition. Another important telescope is the Watcher Robotic Telescope of the University College Dublin, which conducts many successful observations of gamma ray bursts.

“In the first few decades of the twentieth century, the Boyden Observatory contributed considerably to our understanding of the secrets of the universe at large. The period luminosity relationship of the Cepheid variable stars was, for example, discovered from observations obtained at Boyden. This relationship is one of the cornerstones of modern astrophysics. It is currently used to make estimates of the size and age of the universe from observations of the Hubble Space Telescope,” said Prof. Van Schalkwyk.

“The Boyden Observatory contributed to the university’s astrophysics research group being able to produce the first M.Sc. degrees associated with the National Space Science Programme (NASSAP) in the country and the Boyden Science Centre plays an important role in science and technology awareness of learners, teachers and the general public,” said Prof. Van Schalkwyk.

The Boyden Science Centre has also formed strong relationships with various institutions, including the South African Agency for the Advancement of Science and Technology (SAASTA) and the Department of Science and Technology. The centre has already conducted many different projects for the Department of Science and Technology, including National Science Week projects, as well as National Astronomy Month projects. It also serves as one of the hosts of SAASTA’s annual Astronomy Quiz.

Media Release:
Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za
13 May 2009
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept