Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
10 January 2022 | Story Elsabé Brits
Dr Monique De Milander
Dr Monique de Milander, Lecturer in Exercise and Sport Sciences at the UFS, is leading research on attention-deficit hyperactivity disorder (ADHD) and visual and motor control difficulties.

Research done by the University of the Free State (UFS) has shown that Grade 1 learners not only experience visual problems, but also developmental coordination disorder. Teachers and parents can help to identify this.

In the first study published in the South African Journal of Child Health (https://doi.org/10.7196/SAJCH.2021.v15i1.1705), Dr Monique de Milander, Lecturer in Exercise and Sport Sciences at the UFS, led research on attention-deficit hyperactivity disorder (ADHD) and visual and motor control difficulties.

“Visual problems are often overlooked and are seen as a hidden disability. Thus, children are labelled as ADD/ADHD, but in fact, they have learning-related visual problems. Our eyes connect the world with the brain, and we receive 80-90% of information from our eyes. Consequently, visual problems lead to poor vision, and these visual problems will interfere with children’s ability to learn in the classroom,” she explains.

During the study, ADHD symptoms were found to be significantly associated with half of the visual functioning difficulties. These skills include fixation – the ability to fixate on a stationary object with both eyes – in addition to fixating with the eyes independently.

Ocular alignment of the right eye was indicated as a problem – the ability of the two eyes to work together in order to view an object clearly. Therefore, the eyes must move in a coordinated manner. Visual tracking was the skill that the children struggled with the most in both screening tests; thus, to follow a moving object. This was found for both eyes – the right eye on an X shape, and the left eye on a circle.

She added that science suggests that although children at the age of five or six can perform a variety of manipulative skills such as catching, throwing, kicking, and hitting, the manipulative skills that require visual tracking or the ability to intercept moving objects, develop somewhat later (eight years) due to the sophisticated visual-motor requirements.

Furthermore, although maturation plays a role in achieving these skills, children need opportunities to practise the skills in a variety of settings. Parents and teachers should encourage children to take part in physical activities and sports, in addition to proper instruction on how to perform the manipulative skills.

How will these visual difficulties be identified?

It is important to note that children can fixate, visually pursue objects, and reach accurate decisions about the size and shape of an object; however, some refining still has to take place. In other words, the perceptual abilities of the young child are not yet complete. Some examples of visual perception problems in a young child, as indicated by perceptual motor skills involving the eyes, are as follows:

1. Using control to intercept a ball
2. Interchanging letters and numbers
3. Poor perception of moving objects
4. Poor figure-ground perceptual abilities
5. Distance perception
6. Anticipating timing

What is the next step after identifying visual difficulties?

The first aspect to take into consideration is the age of the child, since we now know that their perceptual abilities need to be refined. If the problem continues, screening tests can be done. If the child is at risk, it is recommended that the parent see an optometrist who specialises in visual problems.

How does one assist a child with ADHD in the classroom?

Five tips for teaching students with ADHD:
1. Change activities frequently to accommodate short attention span
2. Use a positive behaviour modification programme to keep student focused on task
3. Incorporate 3-5 min of conscious relaxation at the end of the physical education period
4. Give brief instructions
5. Use activities that promote cooperation among all students

In another study led by Dr De Milander and published in the South African Journal of Childhood Education (https://sajce.co.za/index.php/sajce/article/view/930), the early identification of learners with developmental coordination disorder was researched.

In children experiencing poor motor skills (fine and gross motor coordination difficulties), without evidence of a neurological disorder and which cannot be linked to a general medical difficulty such as cerebral palsy or a pervasive development disorder, the low motor skills are significant – to such an extent that it interferes with their social competence, academic performance, and physical development, leading to problems with completing daily activities, Dr De Milander explains.

The characteristics of developmental coordination disorder are:

• Experiencing problems getting dressed and tying shoelaces
• Finding it difficult to run, skip, or jump
• Experiencing problems with visual perception
• Poor pencil grip
• Slow and hesitant movement
• Poor spatial concepts about in front, behind, next to, below, and above
• Unable to catch or kick a ball
• Finding it difficult to work in group context

She gives the following advice: Children should be motivated and challenged to participate in simple, yet enjoyable and relaxing physical activities. The focus should be on the child's strengths and not his/her weaknesses. Allow the child to play regularly in sandboxes and with clay. Improve the child’s ball skills by catching and throwing. Motor skills must be learnt through simple mastery steps. Improve the child's movement skills and make participation in movement activities enjoyable and challenging. Concentrate on reaction skills and play in which the child can participate. In extreme cases, specialised treatment by an occupational therapist and a kinderkineticist is important.

It is important to know that children do not outgrow these disorders as previously believed; therefore, many children still experience these difficulties as adolescents. Thus, if your child is experiencing any problems, take cognisance of the problem and address it as soon as possible. Professionals such as kinderkineticists are available in private practice and at various schools to assist your child in improving a variety of deviations. The kinderkineticist can evaluate your child through a standardised test to determine the problem, and then suggest an intervention to address the specific problem, as well as to prevent secondary problems such as low self-esteem, physical inactivity, overweight and obesity, etc., which are associated with these disorders.

For help, visit the website of the South African Professional Institute for Kinderkinetics where you will be able to find a kinderkineticist in your area.

Kinderkinetics is a profession aimed at promoting and optimising the neuromotor development of young children (0-13 years) through science-based physical activity.  All programmes within this profession have a preventative, stimulating, developing, and rehabilitative nature. In summary, it has the following goals:

• Promoting functional growth and proper motor development in young children.
• Focusing on certain movement activities to promote/facilitate sport-specific skills.
• Implementing appropriate rehabilitation programmes for children with growth and/or developmental disabilities in order to maintain an active, healthy lifestyle.


News Archive

International Year of Crystallography attracts science experts from across the globe
2014-10-13



Video: Discover what Chrystallopgraphy can do for you
Video: Celebrating Crystallography: An Animated Adventure

Summit programme

The third world summit in the International Year of Crystallography (in Africa) will be hosted by the UFS Department of Chemistry here on the Bloemfontein Campus. Prof André Roodt, Head of the Department of Chemistry, was elected as the President of the European Crystallographic Association in 2012. Earlier this year he unveiled the Max von Laue 'Plaque' in Posnan, Poland.

The Pan-African Meeting of the International Year of Crystallography consists of a congress and summit. The details are as follows:

Congress
12–15 October 2014
CR Swart Senate Hall, UFS Bloemfontein Campus

Summit

15–17 October 2014
CR Swart Senate Hall, UFS Bloemfontein Campus
Summit opening: Wednesday 15 October 2014 at 14:00 in the CR Swart Senate Hall

This event will be opened and attended by:
•    the UFS Rector and Vice-Rector – Profs Jonathan Jansen and Corli Witthuhn;
•    the acting Director-General of the Department of Science and Technology – Dr Thomas Auf der Heyde;
•    the acting CEO of the National Research Foundation – Dr Gansen Pillay;
•    the UNESCO Vice-Director for Science Extension – Dr Jean-Paul Ngome-Abiaga (Paris, France);
•    the representative of the Executive Committee for the International Union of Crystallography (IUCr) – Prof Santiago Garcia-Granda (Oviedo: Spain);
•    the marketing director of the IUCr – Prof Michele Zema (Pavia, Italy);
•    the President of the European Crystallographic Association (ECA) – Prof André Roodt, who will officially open the summit on Wednesday 15 October 2014 from 14:00–15:30.

Presenters from across Africa and Europe will deliver papers at this event which will be attended by more than 100 delegates from twenty-plus countries, including Spain, France, Italy, Croatia, Germany, Russia and India.

Numerous crystallographic research areas will be covered. This includes:
•    powder diffraction,
•    small molecule crystallography,
•    biological crystallography,
•    industrial crystallography,
•    surface crystallography,
as well as techniques such as
•    electron microscopy and
•    synchrotron work.

“At this event we hope to establish an African Crystallographic Association,” said Prof Roodt.

The United Nations declared 2014 as the International Year of Crystallography. It was recently officially opened at the UNESCO headquarters in Paris, France, by the Secretary General of the UN, Ban Ki-moon.

The International Year of Crystallography celebrates the centennial of the work of Max von Laue and the father and son, William Henry and William Laurence Bragg. More generally, it celebrates what crystallography can do for humanity – which proves to be a significant amount.

 

 


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept