Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
20 January 2022 | Story Ruan Bruwer | Photo Supplied
Keenan Carelse.

University of the Free State (UFS) Alumni may be based all around the world, but the United Kingdom (UK) Alumni Chapter aims to reconnect with all those members.

The UK Chapter is a hub of a developing UFS international programme. “We want to provide an opportunity for alumni to share their university experiences with wider audiences,” explains Carmenita Redcliffe Paul, Assistant Director: Alumni Relations and Business Development at the UFS.

Platform to celebrate successes

“The programme aims to provide a platform to alumni to celebrate their successes and provide a window to the landscape of the life and times of the university and the people who shaped it.”

“We also want to celebrate the diversity of our former students and the many touchpoints which unite them.”

Two key projects, Global Citizen and Voices from the Free State, came to life as a result of the collective collaboration of this chapter. The Global Citizen invites people in a series of “courageous conversations” to rethink their relationship with the world. Voices from the Free State is a series of personal podcast narratives by outstanding alumni wherein they reflect their experiences at the UFS. They tell their stories and explain how their university years shaped their future and paved the way to their respective successes.

Relevant association with the UFS

“Furthermore, they motivate why their ongoing association with the UFS is still relevant and important,” says Redcliffe Paul.

The UK Alumni Chapter is led by alumni Francois van Schalkwyk and Keenan Carelse and supported by Adrienne Hall.

Redcliffe Paul says Carelse and Van Schalkwyk have been instrumental in the Voices from the Free State initiative as they are strategically and operationally invested. They create and co-host the podcast series.

Van Schalkwyk is an entrepreneur and innovator consulting with clients globally. Carelse is employed in the healthcare sector in the UK.

News Archive

What do diamonds, chocolates, bugs and almost 30 Nobel Prizes have in common? Crystallography
2014-10-15

 

Some of the keynote speakers and chairpersons at the third world summit in the International Year of Crystallography (in Africa) were, from the left, front: Profs Abdelmalek Thalal (Morocco), Prosper Kanyankogote (University of Kinshasa, Democratic Republic of the Congo); Habib Bougzala (Tunisia), Santiago Garcia-Granda (IUCr, University Oviedo, Spain), Michele Zema (IYCr 2014, Italy/UK) and Dr Jean-Paul Ngome-Abiaga (UNESCO, Paris, France); back: Dr Thomas Auf der Heyde (Acting Director-general, South African Department of Science and Technology); Dr Petrie Steynberg (SASOL) and Prof André Roodt (UFS, host).

Photo: Marija Zbacnik
The third world summit in the International Year of Crystallography (in Africa) was hosted by Prof André Roodt, Head of the Department of Chemistry and President of the European Crystallographic Association,  at the University of the Free State in Bloemfontein.

A declaration with and appeal to support crystallography and science across Africa, was signed.

When one mentions 'Crystallography', or more simply 'crystals', what comes to mind? Diamonds? Perhaps jewellery in general? When thinking of crystals and Crystallography, you will need to think much bigger. And further – even to Mars and back.

Crystallography refers to the branch of science that is concerned with structure and properties of crystals. The obvious examples would include cut diamonds, gemstones such as amethysts, and ‘simple’ crystals such as selenite and quartz.

But have you thought about the irritating brown scales at the bottom of your kettle? The sand in your shoes? The salt over your lamb chops or the sugar in your coffee? All crystals. From egg shells to glucose, from bugs and insecticides to additives in food – even the compounds in chocolate – all fall under the close scrutiny of Crystallography.

The breakthroughs this field of science has produced have led to almost 30 Nobel Prizes over the years.

Determining the structure of DNA by crystallography was arguably one of the most significant scientific events of the 20th century. Different diseases have been cured or slowed by medicines obtained based on crystallographic studies. These include certain cancers, HIV/Aids, Tuberculosis and Malaria. Biological Crystallography enables the development of anti-viral drugs and vaccines.

This field of science influences our daily lives in virtually immeasurable ways. Here are but a few areas of study and development Crystallography contributes to:

•    LCD displays;
•    cellular smartphones;
•    insects and insecticides;
•    additives and products in foods;
•    improved effectiveness and security of credit cards;
•    new materials to preserve energy;
•    better gasoline with less by-products;
•    identify colour pigments used in paintings from the old masters, indicating if it’s an original or an imitation; and
•    beauty products such as nail polish, sun-block, mascara and eye shadow.

Crystallography is also currently used by the Curiosity Rover to analyse the substances and minerals on Mars.

Crystals and Crystallography form an integrated part of our daily lives – from bones and teeth to medicines and viruses, from chocolates to the blades in airplane turbines. Even down to the humble snowflake.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept