Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 July 2022 | Story Andre Damons | Photo Supplied
Prof Stephan Brown
Prof Stephan Brown is a Principal Specialist and Head of the Division of Paediatric Cardiology in the Department of Paediatrics and Child Health in the Faculty of Health Sciences at the University of the Free State (UFS).

Paediatric heart specialists at the Universitas Academic Hospital and the University of the Free State (UFS) hope their research into the deadly Cyanotic Heart Disease amongst newborns will assist health authorities in central South Africa to restructure healthcare services and do better health-planning to save more lives.

Prof Stephen Brown, Principal Specialist and Head of the Division of Paediatric Cardiology in the Department of Paediatrics and Child Health in the Faculty of Health Sciences at the UFS, says children from poor and rural areas in central South Africa are dying of Cyanotic Heart Disease. One of the main contributors to these deaths is the distance patients have to travel to regional hospitals. 

The research was done under the auspices of the Robert W M Frater Cardiovascular Research Centre in the department of cardiothoracic surgery in the UFS School of Medicine. The results are still in the preliminary stage as the final data is still being analysed. The Robert W M Frater Cardiovascular Research Centre (the Frater Centre) was established in 2015 under the leadership of Prof. Francis E Smit. This was made possible through donor funding, especially by Dr Robert W M Frater MD PhD (honoris causa, UFS), a South Africa-born New York-based cardiothoracic surgeon, researcher and innovator as infrastructure and project support by the UFS.

The vision of the Frater Centre is to be a leading cardiovascular research institution in South Africa and sub-Saharan Africa. It provides an interdisciplinary training and research platform for scientists and clinicians from different backgrounds to develop as researchers and collaborators in cardiovascular and thoracic surgery and related domains. Activities are focused on the development of African solutions for African problems.

According to Prof Brown, who is also a paediatric cardiologist at the Universitas Hospital, children with this disease present with a blueish colour because the oxygenated and desaturated blood mixes, leading to the blue discoloration. Prof Brown and his master’s degree researcher (Marius van Jaarsveld) focused on single ventricle physiologies; children who effectively have a single pumping chamber which means one of the chambers is underdeveloped or not developed at all. A normal person has two pumping chambers.  

“With this study we looked over 20 years of cases. Over this period we saw 154 children. It is a retrospective study because we are fortunate to have a very extensive database dating back to 1987. One thing of concern is that we should have seen a lot more children if you look at the worldwide statistics,” says Prof Brown.

Treatment 

According to him, 40 of these children never received any form of therapy for the simple reason that a lot of them presented too late while others had severe birth asphyxia when they got to the hospital. 

Treatment for Cyanotic Heart Disease usually involves up to three operations before the children become pink again. “The first operation is called palliation to ensure we control the lung blood. That is usually in the first to two to six weeks after birth. The second operation is done between six months to a year of age when we do to what we call a bidirectional Glen – second-stage palliation. Also to improve general condition and take some of the volume off the heart. The last operation, called the Fontan operation, happens between six to seven years of age and that’s when they become pink,” explains Prof Brown.

Prof Brown says the results from the study compare favorably with the rest of South Africa and Africa but do not compare that well to high-income countries because they have more resources available. 

They have seen children from Northern Cape, North West, some parts of the Eastern Cape and Lesotho. According to Prof Brown, once they looked closer, they discovered that the closer the patients are to the hospital, the sooner they present to hospital. The further away they are, the longer it takes them to present at a hospital with congenital cardiac facilities. 

“In Mangaung we saw the kids when they were around about four days old. At Thabo Mofutsanyana district in Qwaqwa we saw them three to four days after birth. So they presented early. Lejweleputswa and Xhariep districts we saw the patients after they were one month old. In densely populated areas it is picked up early, as they are closer to the referral hospitals. The further, away from a hospital, the longer it takes to get to us. In Lesotho it takes up to six months [for them to get to us] and the Northern Cape up to two months of age,” explains Prof Brown.

This is most likely an indication that distance from the hospitals plays a major role in deaths. 

How will the study help? 

Though a part of the study is for epidemiological information, Prof Brown hopes that the health authorities will take stock of the findings. “These studies are important to make health authorities aware of the challenges and to assist in health planning. What can we do better for the people? We are doing clinical research. This is important because we are a mid- to low-income country with limited resources and it is important for the population we are dealing with.”
“Our prime aim is if one knows what is going on in your population you can restructure your health care accordingly. That is our ultimate aim. Get it published and talk to the authorities. Now we can scientifically prove instead of relying on perception.”

The solution

Prof Brown says this disease can potentially be prevented by doing foetal heart sonar scans. If there is a huge screening project, a large number of deaths can potentially be prevented. Maternal screening is very important. Early referrals are also a step in the right direction. “Our parents, caregivers, and nurses need to be educated. Another solution is to do a simple saturation screening monitor prior to discharge after birth. I have been advocating for this for years and hopefully, before I retire, it will become routine procedure. Obviously there will be a lot of false positives, but we can help our people by earlier recognition of cyanosis.”

• Prof Brown, who is passionate about the health of children, says a life-saving collaboration initiative between the UFS, the Mother and Child Academic Hospital (MACAH) Foundation, and the Discovery Fund started five years ago to help curb the death of young patients due to congenital heart disease, and to make services more accessible to rural communities. With this outreach initiative, Prof Brown travels to rural areas in the Free State to diagnose heart defects in babies early. 

News Archive

Africa's Black Rhino conservation strategy must change
2017-07-10

 Description: Black Rhino Tags: conservation strategy, black rhino, Nature Scientific Reports, National Zoological Gardens of South Africa, extinction, decline in genetic diversity, Prof Antoinette Kotze, Research and Scientific Services, Dr Desire Dalton 

The black rhino is on the brink of extinction. The study that was 
published in the Nature Scientific Reports reveals that the
species has lost an astonishing 69% of its genetic variation. 
Photo: iStock

The conservation strategy of the black rhino in Africa needs to change in order to protect the species from extinction, a group of international researchers has found. The study that was published in the Nature Scientific Reports reveals that the species has lost an astonishing 69% of its genetic variation. 

South African researchers took part 

The researchers, which included local researchers from the National Zoological Gardens of South Africa (NZG), have highlighted the fact that this means the black rhino is on the brink of extinction. "We have found that there is a decline in genetic diversity, with 44 of 64 genetic lineages no longer existing," said Prof Antoinette Kotze, the Manager of Research and Scientific Services at the Zoo in Pretoria. She is also affiliate Professor in the Department of Genetics at the University of the Free State and has been involved in rhino research in South Africa since the early 2000s.  

DNA from museums and the wild 
The study compared DNA from specimens in museums around the world, which originated in the different regions of Africa, to the DNA of live wild animals. The DNA was extracted from the skin of museum specimen and from tissue and faecal samples from animals in the wild. The research used the mitochondrial genome.

"The rhino poaching ‘pandemic’
needs to be defeated, because
it puts further strain on the genetic
diversity of the black rhino.”


Ability to adapt 
Dr Desire Dalton, one of the collaborators in the paper and a senior researcher at the NZG, said the loss of genetic diversity may compromise the rhinos’ ability to adapt to climate change. The study further underlined that two distinct populations now exists on either side of the Zambezi River. Dr Dalton said these definite populations need to be managed separately in order to conserve their genetic diversity. The study found that although the data suggests that the future is bleak for the black rhinoceros, the researchers did identify populations of priority for conservation, which might offer a better chance of preventing the species from total extinction. However, it stressed that the rhino poaching ‘pandemic’ needs to be defeated, because it puts further strain on the genetic diversity of the black rhino. 

Extinct in many African countries 
The research report further said that black rhino had been hunted and poached to extinction in many parts of Africa, such as Nigeria, Chad, Cameroon, Sudan, and Ethiopia. These rhino are now only found in five African countries. They are Tanzania, Zimbabwe, Kenya, Namibia, and South Africa, where the majority of the animals can be found. 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept