Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
11 July 2022 | Story Andre Damons | Photo Supplied
Prof Stephan Brown
Prof Stephan Brown is a Principal Specialist and Head of the Division of Paediatric Cardiology in the Department of Paediatrics and Child Health in the Faculty of Health Sciences at the University of the Free State (UFS).

Paediatric heart specialists at the Universitas Academic Hospital and the University of the Free State (UFS) hope their research into the deadly Cyanotic Heart Disease amongst newborns will assist health authorities in central South Africa to restructure healthcare services and do better health-planning to save more lives.

Prof Stephen Brown, Principal Specialist and Head of the Division of Paediatric Cardiology in the Department of Paediatrics and Child Health in the Faculty of Health Sciences at the UFS, says children from poor and rural areas in central South Africa are dying of Cyanotic Heart Disease. One of the main contributors to these deaths is the distance patients have to travel to regional hospitals. 

The research was done under the auspices of the Robert W M Frater Cardiovascular Research Centre in the department of cardiothoracic surgery in the UFS School of Medicine. The results are still in the preliminary stage as the final data is still being analysed. The Robert W M Frater Cardiovascular Research Centre (the Frater Centre) was established in 2015 under the leadership of Prof. Francis E Smit. This was made possible through donor funding, especially by Dr Robert W M Frater MD PhD (honoris causa, UFS), a South Africa-born New York-based cardiothoracic surgeon, researcher and innovator as infrastructure and project support by the UFS.

The vision of the Frater Centre is to be a leading cardiovascular research institution in South Africa and sub-Saharan Africa. It provides an interdisciplinary training and research platform for scientists and clinicians from different backgrounds to develop as researchers and collaborators in cardiovascular and thoracic surgery and related domains. Activities are focused on the development of African solutions for African problems.

According to Prof Brown, who is also a paediatric cardiologist at the Universitas Hospital, children with this disease present with a blueish colour because the oxygenated and desaturated blood mixes, leading to the blue discoloration. Prof Brown and his master’s degree researcher (Marius van Jaarsveld) focused on single ventricle physiologies; children who effectively have a single pumping chamber which means one of the chambers is underdeveloped or not developed at all. A normal person has two pumping chambers.  

“With this study we looked over 20 years of cases. Over this period we saw 154 children. It is a retrospective study because we are fortunate to have a very extensive database dating back to 1987. One thing of concern is that we should have seen a lot more children if you look at the worldwide statistics,” says Prof Brown.

Treatment 

According to him, 40 of these children never received any form of therapy for the simple reason that a lot of them presented too late while others had severe birth asphyxia when they got to the hospital. 

Treatment for Cyanotic Heart Disease usually involves up to three operations before the children become pink again. “The first operation is called palliation to ensure we control the lung blood. That is usually in the first to two to six weeks after birth. The second operation is done between six months to a year of age when we do to what we call a bidirectional Glen – second-stage palliation. Also to improve general condition and take some of the volume off the heart. The last operation, called the Fontan operation, happens between six to seven years of age and that’s when they become pink,” explains Prof Brown.

Prof Brown says the results from the study compare favorably with the rest of South Africa and Africa but do not compare that well to high-income countries because they have more resources available. 

They have seen children from Northern Cape, North West, some parts of the Eastern Cape and Lesotho. According to Prof Brown, once they looked closer, they discovered that the closer the patients are to the hospital, the sooner they present to hospital. The further away they are, the longer it takes them to present at a hospital with congenital cardiac facilities. 

“In Mangaung we saw the kids when they were around about four days old. At Thabo Mofutsanyana district in Qwaqwa we saw them three to four days after birth. So they presented early. Lejweleputswa and Xhariep districts we saw the patients after they were one month old. In densely populated areas it is picked up early, as they are closer to the referral hospitals. The further, away from a hospital, the longer it takes to get to us. In Lesotho it takes up to six months [for them to get to us] and the Northern Cape up to two months of age,” explains Prof Brown.

This is most likely an indication that distance from the hospitals plays a major role in deaths. 

How will the study help? 

Though a part of the study is for epidemiological information, Prof Brown hopes that the health authorities will take stock of the findings. “These studies are important to make health authorities aware of the challenges and to assist in health planning. What can we do better for the people? We are doing clinical research. This is important because we are a mid- to low-income country with limited resources and it is important for the population we are dealing with.”
“Our prime aim is if one knows what is going on in your population you can restructure your health care accordingly. That is our ultimate aim. Get it published and talk to the authorities. Now we can scientifically prove instead of relying on perception.”

The solution

Prof Brown says this disease can potentially be prevented by doing foetal heart sonar scans. If there is a huge screening project, a large number of deaths can potentially be prevented. Maternal screening is very important. Early referrals are also a step in the right direction. “Our parents, caregivers, and nurses need to be educated. Another solution is to do a simple saturation screening monitor prior to discharge after birth. I have been advocating for this for years and hopefully, before I retire, it will become routine procedure. Obviously there will be a lot of false positives, but we can help our people by earlier recognition of cyanosis.”

• Prof Brown, who is passionate about the health of children, says a life-saving collaboration initiative between the UFS, the Mother and Child Academic Hospital (MACAH) Foundation, and the Discovery Fund started five years ago to help curb the death of young patients due to congenital heart disease, and to make services more accessible to rural communities. With this outreach initiative, Prof Brown travels to rural areas in the Free State to diagnose heart defects in babies early. 

News Archive

Researchers international leaders in satellite tracking in the wildlife environment
2015-05-29

 

Ground-breaking research has attracted international media attention to Francois Deacon, lecturer and researcher in the Department Animal, Wildlife and Grassland Sciences at the UFS, and Prof Nico Smit, from the same department. They are the first researchers in the world to equip giraffes with GPS collars, and to conduct research on this initiative. Recently, they have been joined by Hennie Butler from the Department of Zoology as well as Free State Nature Conservation to further this research.

“Satellite tracking is proving to be extremely valuable in the wildlife environment. The unit is based on a mobile global two-way communication platform, utilising two-way data satellite communication, complete with GPS systems.

“It allows us to track animals day and night, while we monitor their movements remotely from the computer. These systems make possible the efficient control and monitoring of wildlife in all weather conditions and in near-to-real time. We can even communicate with the animals, calling up their positions or changing the tracking schedules.

“The satellite collar allows us to use the extremely accurate data to conduct research with the best technology available. The volume of data received allows us to publish the data in scientific journals and research-related articles.  

“Scientific institutions and the public sector have both shown great interest in satellite tracking, which opens up new ground for scientific research for this university. Data management can be done, using Africa Wildlife Tracking (AWT) equipment where we can access our data personally, store it, and make visual presentations. The AWT system and software architecture provide the researcher with asset tracking, GPS location reports, geo-fencing, highly-detailed custom mapping, history reports and playback, polling on demand, history plotting on maps, and a range of reporting types and functions,” Francois said.

Data can be analysed to determine home range, dispersal, or habitat preference for any specific species.

Francois has been involved in multiple research projects over the last 12 years on wildlife species and domesticated animals, including the collaring of species such as Black-backed Jackal, Caracal, African Wild Dog, Hyena, Lion, Cheetah, Cattle, Kudu, Giraffe, and Black Rhino: “Giraffe definitely being the most challenging of all,” he said.

In 2010, he started working on his PhD, entitled The spatial ecology, habitat preferences and diet selection of giraffe (Giraffa camelopardalis giraffa) in the Kalahari region of South Africa.

 

Since then, his work has resulted not only in more research work (supervising four Masters students) but also in a number of national and international projects. These include work in the:

  • Kalahari region (e.g. Khamab Nature Reserve and Kgalagadi Transfrontier Park)
  • Kuruman region (Collared 18 cattle to identify spatial patterns in relation to the qualities of vegetation and soil-types available. This project took place in collaboration with Born University in Germany)
  • Woodland Hills Wildlife Estate and Kolomella Iron Ore – ecological monitoring
  • A number of Free State nature reserves (e.g. Distribution of herbivores (kudu and giraffe) and predators (camera traps)

Francois is also involved with species breeding programmes and management (giraffe, buffalo, sable, roan, and rhino) in Korrannaberg, Rustenburg, Hertzogville, Douglas, and Bethlehem as well as animal and ecological monitoring in Kolomella and Beesthoek iron ore.

Besides the collaring of giraffes, Francois and his colleagues are involved in national projects, where they collect milk from lactating giraffes and DNA material, blood samples, and ecto/endo parasites from giraffes in Southern Africa.

With international projects, Francois is working to collect DNA material for the classification of the nine sub-species of giraffe in Africa. He is also involved in projects focusing on the spatial ecology and adaptation of giraffe in Uganda (Murchison Falls), and to save the last 30 giraffe in the DRC- Garamba National Park.

This project has attracted a good deal of international interest. In June 2014, a US film crew (freelancing for Discovery Channel) filmed a documentary on Francois’ research (trailer of documentary). Early in 2015, a second crew, filming for National Geographic, also visited Francois to document his work.

 

More information about Francois’ work is available at the GCF website

Read Francois Deacon's PhD abstract

Direct enquiries to news@ufs.ac.za.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept